올세라믹 심미 수복재료의 최신 동향과 적합한 시멘트 선택 및 사용

Recent Trend of Esthetic All-Ceramic Materials and Guidelines for Correct Cementation

  • 박영준 (전남대학교 치의학전문대학원 치과재료학교실)
  • Park, Yeong-Joon (Department of Dental Materials, School of Dentistry, Chonnam National University)
  • 발행 : 2020.06.30

초록

Recently, there are much improvement in optical and mechanical properties of dental ceramic materials coupled with improved fabrication techniques, which have caused a considerable shift in the preference of the dentists to ceramic restorations. Because the chemical composition and microstructure of all-ceramic materials are different by the type, correct choice of cement type and surface treatment procedure, and cementation strategy is essential for the success of ceramic restorations with adequate retention and decreased incidence of complications. This manuscript reviews on the most often prescribed and some newly developed ceramic materials, and the selection criteria and usage guidelines of cement materials that are used in conjunction with various ceramic materials. This manuscript emphasizes that continuous updating the information of newly developed ceramic and cement materials and application techniques by the dentists and dental staffs are demanding in response to the constantly improving ceramic and cement materials and corresponding application protocol changes.

키워드

참고문헌

  1. Makhija SK, Lawson NC, Gilbert GH, Litaker MS, McClelland JA, Louis DR, et al. Dentist material selection for single-unit crowns: Findings from the National Dental Practice-Based Research Network. J Dent. 2016;55:40-7. https://doi.org/10.1016/j.jdent.2016.09.010
  2. van Noort R. The future of dental devices is digital. Dent Mater. 2012;28(1):3-12. https://doi.org/10.1016/j.dental.2011.10.014
  3. Bunek S. Ceramics and surface treatments. Dental Advisor. 2018,35(3):2-6.
  4. Adair PJ, Grossman DG. The castable ceramic crown. Int J Periodontics Restorative Dent. 1984;4(2):32-46.
  5. Sadoun M. All ceramic bridges with the slip casting technique. Presented at the 7th International Symposium on Ceramics; September; paris1988.
  6. Seghi RR, Leyva Del Rio D. Biomaterials: Ceramic and adhesive technologies. Dent Clin N Am. 2019;63(2):233-48. https://doi.org/10.1016/j.cden.2018.11.005
  7. Fabian Fonzar R, Carrabba M, Sedda M, Ferrari M, Goracci C, Vichi A. Flexural resistance of heat-pressed and CAD-CAM lithium disilicate with different translucencies. Dent Mater. 2017;33(1):63-70. https://doi.org/10.1016/j.dental.2016.10.005
  8. Wen G, Zheng X, Song L. Effects of P2O5 and sintering temperature on microstructure and mechanical properties of lithium disilicate glass-ceramics. Acta Mater. 2007;55(10):3583-91. https://doi.org/10.1016/j.actamat.2007.02.009
  9. Jin J, Takahashi H, Iwasaki N. Effect of test method on flexural strength of recent dental ceramics. Dent Mater J, 2004;23(4): 490-6. https://doi.org/10.4012/dmj.23.490
  10. Chung SM, Yap AUJ, Chandra SP, Lim CT. Flexural strength of dental composite restoratives: Comparison of biaxial and tree-point bending test. J Biomed Meter Res B.2004;71(2):278-83.
  11. International Organization for Standardization. ISO 6872:2015(E). Dentistry - Ceramic materials. Geneva: ISO; 2015.
  12. 한국치과재료학교수협의회. 치과재료학 제8판. 군자출판사. 2020.
  13. Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NR. All-ceramic systems: laboratory and clinical performance. Dent Clin N Am. 2011;55(2):333-52, https://doi.org/10.1016/j.cden.2011.01.005
  14. Zhang Y, Kelly JR. Dental ceramics for restoration and metal veneering. Dent Clin N Am. 2017;61(4):797-819. https://doi.org/10.1016/j.cden.2017.06.005
  15. Lawson NC, Bansal R, Burgess JO. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent Mater. 2016;32(11):e275-e83. https://doi.org/10.1016/j.dental.2016.08.222
  16. Sim JH, Lee JB, Hwang SS. Effect of glazing on the flexural strength of lithium disilicate glass ceramics. Kor J Dent Mater. 2019;46(4):185-94. https://doi.org/10.14815/kjdm.2019.46.4.185
  17. Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater. 2016;32(7):908-14. https://doi.org/10.1016/j.dental.2016.03.013
  18. Beham G. IPS-Empress: a new ceramic technology. ZWR. 1991;100(6):404-8.
  19. Severance G. Introducing a lithium disilicate glass-ceramic: IPS Empress 2. Signature. 1999;4:1-3.
  20. Belli R, Wendler M, de Ligny D, Cicconi MR, Petschelt A, Peterlik H, et al. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dent Mater. 2017;33(1):84-98. https://doi.org/10.1016/j.dental.2016.10.009
  21. Monteiro JB, Oliani MG, Guilardi LF, Prochnow C, Rocha Pereira GK, Bottino MA, et al. Fatigue failure load of zirconia-reinforced lithium silicate glass ceramic cemented to a dentin analogue: Effect of etching time and hydrofluoric acid concentration. J Mech Behav Biomed Mater. 2018;77:375-82. https://doi.org/10.1016/j.jmbbm.2017.09.028
  22. Riquieri H, Monteiro JB, Viegas DC, Campos TMB, de Melo RM, de Siqueira Ferreira Anzaloni Saavedra G. Impact of crystallization firing process on the microstructure and flexural strength of zirconia-reinforced lithium silicate glass-ceramics. Dent Mater. 2018;34(10):1483-91. https://doi.org/10.1016/j.dental.2018.06.010
  23. Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater. 2016;32(7):908-14. https://doi.org/10.1016/j.dental.2016.03.013
  24. Sen N, Us YO. Mechanical and optical properties of monolithic CADCAM restorative materials. J Prosthet Dent. 2018;119(4):593-9. https://doi.org/10.1016/j.prosdent.2017.06.012
  25. McLaren EA, Giordano RA. Zirconia-based ceramics. material properties, esthetics and layering techniques of a new veneering porcelain, VM9. Quintessence Dent Tech. 2005:99-111.
  26. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater. 2014;30(10):1195-203. https://doi.org/10.1016/j.dental.2014.08.375
  27. Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res. 2018;97(2):140-7. https://doi.org/10.1177/0022034517737483
  28. McLaren EA, Lawson N, Choi J, Kang J, Trujillo C. New high-translucent cubic-phase-containing zirconia. Inside Dental Technology. 2017;8(10):26-35.
  29. Bunek S. Ceramics and surface treatments. Dental Advisor. 2019,36(2):2.
  30. Diaz-Arnold AM, Vargas MA, Haselton DR. Current status of luting agents for fixed prosthodontics. J Prosthet Dent. 1999;81(2):135-41. https://doi.org/10.1016/S0022-3913(99)70240-4
  31. DG G. Nelson JW. The bonded Dicor crown. J Dent Res. 1987;66:206.
  32. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20(1):1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  33. Almehmadi N, Kutkut A, Al-Sabbagh M. What is the Best Available luting agent for implant prosthesis? Dent Clin N Am. 2019;63(3):531-45. https://doi.org/10.1016/j.cden.2019.02.014
  34. Noie F, O'Keefe KL, Powers JM. Color stability of resin cements after accelerated aging. Int J Prosthodont. 1995;8(1):51-5.
  35. Moszner N, Liska R. Photoinitiators for direct adhesive restorative material. In: Fouassier JP, Allonas X, editors. Basics and Applications of Photopolymerization Reactions. 1. Kerala: Research Signpost; 2010. p. 93-114.
  36. Park YJ, Chae KH, Rawls HR. Development of a new photoinitiation system for dental light-cure composite resins. Dent Mater. 1999;15(2):120-7. https://doi.org/10.1016/S0109-5641(99)00021-4
  37. Asmussen S, Vallo C. Light absorbing products during polymerization of methacrylate monomers photoinitiated with phenyl-1, 2-propanedione/amine. J Photoch Photobio A. 2009;202(2-3):228-34. https://doi.org/10.1016/j.jphotochem.2008.12.007
  38. Cook WD, Chen F. Enhanced photopolymerization of dimethacrylates with ketones, amines, and iodonium salts: The CQ system. J Polym Sci Pol Chem. 2011;49(23):5030-41. https://doi.org/10.1002/pola.24964
  39. Ganster B, Fischer UK, Moszner N, Liska R. New photocleavable structures, 4: Acylgermane-based photoinitiator for visible light Curing. Macromol Rapid Comm. 2008;29(1):57-62. https://doi.org/10.1002/marc.200700620
  40. Ganster B, Fischer UK, Moszner N, Liska R. New photocleavable structures. Diacylgermane-based photoinitiators for visible light curing. Macromolecules. 2008;41(7):2394-400. https://doi.org/10.1021/ma702418q
  41. van Dijken JW, Pallesen U. Long-term dentin retention of etchand-rinse and self-etch adhesives and a resin-modified glass ionomer cement in non-carious cervical lesions. Dent Mater. 2008;24(7):915-22. https://doi.org/10.1016/j.dental.2007.11.008
  42. Tian T, Tsoi JK, Matinlinna JP, Burrow MF. Aspects of bonding between resin luting cements and glass ceramic materials. Dent Mater. 2014;30(7):e147-62. https://doi.org/10.1016/j.dental.2014.01.017
  43. Yoshihara K, Nagaoka N, Sonoda A, Maruo Y, Makita Y, Okihara T, et al. Effectiveness and stability of silane coupling agent incorporated in 'universal' adhesives. Dent Mater. 2016;32(10):1218-25. https://doi.org/10.1016/j.dental.2016.07.002
  44. Lung CY, Matinlinna JP. Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent Mater. 2012;28(5):467-77. https://doi.org/10.1016/j.dental.2012.02.009
  45. Hitz T, Stawarczyk B, Fischer J, Hammerle CH, Sailer I. Are selfadhesive resin cements a valid alternative to conventional resin cements? A laboratory study of the long-term bond strength. Dent Mater. 2012;28(11):1183-90. https://doi.org/10.1016/j.dental.2012.09.006
  46. Nagaoka N, Yoshihara K, Feitosa VP, Tamada Y, Irie M, Yoshida Y, et al. Chemical interaction mechanism of 10-MDP with zirconia. Scientific Rep-UK. 2017;7(1):1-7. https://doi.org/10.1038/s41598-016-0028-x
  47. Ozcan M, Allahbeickaraghi A, Dundar M. Possible hazardous effects of hydrofluoric acid and recommendations for treatment approach: a review. Clin Oral Invest. 2012;16(1):15-23. https://doi.org/10.1007/s00784-011-0636-6
  48. Blatz MB, Chiche G, Jolst S, Sadan A. Influence of surface treatment and simulated aging on bond strengths of luting agents to zirconia. J Appl Oral Sci. 2007;38(9):745-53.
  49. Derand T, Molin M, Kleven E, Haag P, Karlsson S. Bond strength of luting materials to ceramic crowns after different surface treatments. Eur J Prosthodont Restor Dent. 2008;16(1):35-8.
  50. Kern M, Thompson VP. Sandblasting and silica coating of a glassinfiltrated alumina ceramic: volume loss, morphology, and changes in the surface composition. The Journal of prosthetic dentistry. 1994;71(5):453-61. https://doi.org/10.1016/0022-3913(94)90182-1
  51. Calamia J. Vaidyanathan. TK and Hirsh, SM, Shear bond strength of etched porcelains. J Dent Res. 1985;64.
  52. Lacy AM, LaLuz J, Watanabe LG, Dellinges M. Effect of porcelain surface treatment on the bond to composite. J Prosthet Dent. 1988;60(3):288-91. https://doi.org/10.1016/0022-3913(88)90270-3
  53. Ramakrishnaiah R, Alkheraif AA, Divakar DD, Matinlinna JP, Vallittu PK. The effect of hydrofluoric acid etching duration on the surface micromorphology, roughness, and wettability of dental ceramics. Int J Mol Sci. 2016;17(6).
  54. Zogheib LV, Bona AD, Kimpara ET, Mccabe JF. Effect of hydrofluoric acid etching duration on the roughness and flexural strength of a lithium disilicate-based glass ceramic. Braz Dent J. 2011;22(1):45-50. https://doi.org/10.1590/S0103-64402011000100008
  55. Prochnow C, Venturini AB, Grasel R, Gundel A, Bottino MC, Valandro LF. Adhesion to a lithium disilicate glass ceramic etched with hydrofluoric acid at distinct concentrations. Braz Dent J. 2018;29(5):492-9. https://doi.org/10.1590/0103-6440201802080
  56. Prado M, Prochnow C, Marchionatti AME, Baldissara P, Valandro LF, Wandscher VF. Ceramic surface treatment with a single-component primer: resin adhesion to glass ceramics. J Adhes Dent. 2018;20(2):99-105.
  57. Maier E, Bordihn V, Belli R, Taschner M, Petschelt A, Lohbauer U, et al. New approaches in bonding to glass-ceramic: Self-etch glass-ceramic primer and universal adhesives. J Adhes Dent. 2019;21(3):209-17.
  58. Lopes GC, Ballarin A. Hydrofluoric acid-simple things you may do not know about some thing you are so habituated to use. J Dent Sc. 2015;16:15-23.
  59. Matinlinna JP, Vallittu PK. Bonding of resin composites to etchable ceramic surfaces - an insight review of the chemical aspects on surface conditioning. J Oral Rehabil. 2007;34(8):622-30. https://doi.org/10.1111/j.1365-2842.2005.01569.x
  60. Park YJ, Yang HS. Synthesis of fluoride releasing resin and fluoride level changes of the tooth structure. J Kor Res Soc Dent Mater. 1987;14(1):35-55.
  61. Amaral R, Ozcan M, Valandro LF, Balducci I, Bottino MA. Effect of conditioning methods on the microtensile bond strength of phosphate monomer-based cement on zirconia ceramic in dry and aged conditions. J Biomed Mater Res B Appl Biomater. 2008;85(1):1-9.
  62. Russo DS, Cinelli F, Sarti C, Giachetti L. Adhesion to Zirconia: A systematic review of current conditioning methods and bonding Materials. Dent J. 2019;7(3):74. https://doi.org/10.3390/dj7030074
  63. Demetoglu GA, Zortuk M. Effect of surface treatments on leakage of zirconium oxide ceramics. Meandros Med Dent J. 2016;17(2):64-9. https://doi.org/10.4274/meandros.2585
  64. May LG, Passos SP, Capelli DB, Ozcan M, Bottino MA, Valandro LF. Effect of silica coating combined to a MDP-based primer on the resin bond to Y-TZP ceramic. J Biomed Mater Res B. 2010;95(1):69-74.
  65. Ataol AS, Ergun G. Effects of surface treatments on repair bond strength of a new CAD/CAM ZLS glass ceramic and two different types of CAD/CAM ceramics. J Oral Sci. 2018;60(2):201-11. https://doi.org/10.2334/josnusd.17-0109
  66. do Prado Sato T, Cotes C, Yamamoto LT, Rossi NR, da Cruz Macedo V, Kimpara ET. Flexural strength of a pressable lithium disilicate ceramic: influence of surface treatments. Applied Adhesion Science. 2013;1(1):1-5. https://doi.org/10.1186/2196-4351-1-1
  67. Samran A, Al-Ammari A, El Bahra S, Halboub E, Wille S, Kern M. Bond strength durability of self-adhesive resin cements to zirconia ceramic: An in vitro study. J Prosthet Dent. 2019;121(3):477-84. https://doi.org/10.1016/j.prosdent.2018.03.026