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1  |   INTRODUCTION

Precise localization of a mobile node is essential for various 
location‐based services [1].

A GPS‐based localization method is commonly used to 
estimate the position of a mobile node in an outdoor environ-
ment because of the following advantages [2,3]: (i) it requires 
only a small receiver unit to acquire signals from GPS sat-
ellites and (ii) a map is not required. However, this method 
cannot be used to estimate the position of a mobile node in 
an indoor environment because signals from GPS satellites 
are blocked by various structures such as walls or buildings 
[4]. If a receiver unit cannot acquire signals from a sufficient 
number of GPS satellites, this method cannot estimate the 
position of a mobile node accurately or may fail to estimate 
the position entirely. Range‐only beacon‐based localiza-
tion methods have been proposed to estimate the position 
of a mobile node in a GPS‐denied environment [5]. These 
methods estimate the position of a mobile node by associ-
ating multiple range‐only measurements between a mobile 
node and range‐only beacons. Triangulation is a well‐known 
technique used to estimate the position of a mobile node. It 

uses the time‐of‐arrival (ToA) or time‐difference‐of‐arrival 
(TODA) to associate multiple range‐only measurements 
[1,6,7]. Various devices such as RFID, WiFi, Bluetooth, and 
ultra‐wideband (UWB) communications devices can be used 
as a range‐only beacon for a triangulation approach. Among 
them, UWB communication devices are more commonly 
used than other devices [8,9] because they are cost‐effective, 
compact, and provide accurate distance measurements. With 
a UWB communication, the distance between a sender and 
receiver is calculated using the difference between the send-
ing and receiving times of a very short pulse. A Ubisense sen-
sor system is a well‐known indoor localization solution that 
uses UWB communication devices [10]. The system consists 
of several fixed UWB communication devices, an active mo-
bile tag, and software. The distance between each fixed UWB 
communication device and the active mobile tag is computed 
using a transmitted signal from the active mobile tag. The 
position of the active mobile tag is estimated through soft-
ware using the TODA and angle‐of‐arrival data fusion meth-
ods. The system estimates the position of the active mobile 
tag with submeter accuracy and can cover an area as large as 
400 m2 with four fixed UWB communication devices.
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Although range‐only beacon‐based localization methods 
using UWB communication devices can estimate the position 
of a mobile node in a GPS‐denied environment accurately, 
they have certain limitations. To estimate the position of a 
mobile node using range‐only beacons accurately, an accurate 
map of range‐only beacons must be available. If the locations 
of some range‐only beacons are incorrectly mapped, the esti-
mation of the position of a mobile node will be inaccurate. In 
a small environment, the locations of range‐only beacons can 
be registered manually. However, manual registration cannot 
be utilized in a large environment.

An autonomous registration is required to build a map of 
range‐only beacons in a large environment. Unfortunately, 
autonomous registration is a challenging issue because of the 
properties of a range‐only beacon. A range‐only beacon does 
not provide a bearing measurement. Moreover, a range mea-
surement provided by a range‐only beacon contains exten-
sive noise when the line‐of‐sight (LOS) between a range‐only 
beacon and a mobile node does not exist. The LOS should be 
required to measure accurately the distance between a range‐
only beacon and a mobile node. If no LOS exists, multipath 
propagation will occur [11,12]. The distance is inaccurately 
measured because the signal from a range‐only beacon is in-
directly received or delayed. The distance measured from an 
indirectly received or delayed signal has large uncertainty.

To overcome this problem, various autonomous regis-
tration methods have been proposed. Most of them can be 
classified into two approaches. The first approach uses inter-
communication between range‐only beacons to estimate the 
beacon locations. The ad‐hoc localization and direct position 
estimation methods compute the location of each range‐only 
beacon by recursively measuring the distances from the 
neighboring range‐only beacons [13,14]. Shell sweeps and 
component‐based methods have been proposed to estimate 
the locations of range‐only beacons using their graphical 
structures, which represent the intercommunication connec-
tivity of range‐only beacons [15,16]. These methods build 
graphical structures of the range‐only beacons and then esti-
mate the locations of the beacons by partitioning the graph-
ical structures and merging the graphical substructures. An 
intercommunication‐based approach is used to estimate the 
locations of range‐only beacons without using any external 
information. However, this approach has certain limitations. 
If the connectivity of the range‐only beacons is sparse, their 
locations cannot be accurately estimated. In addition, this ap-
proach cannot deal with multipath propagation.

The second approach uses various probabilistic estima-
tion techniques in robotics. With this approach, a mobile 
node acquires measurements from range‐only beacons while 
moving within an environment, and the locations of range‐
only beacons are then estimated using the acquired mea-
surements and odometry information of a mobile node [17].
Various methods using this approach focus on the bearing 

ambiguities of range‐only measurements. Gaussian mixture 
model‐based mapping methods have been proposed to es-
timate the locations of range‐only beacons [18,19]. These 
methods model the bearing uncertainties of range‐only mea-
surements using a mixture of Gaussians. The voting‐based 
method has been proposed to estimate the locations of range‐
only beacons [20]. This method uses a 2D grid map to ac-
cumulate the possible location of each range‐only beacon. 
Two point intersections of two range‐only measurements, 
which are acquired in two positions, are estimated, and two 
votes are then assigned to the two corresponding grid cells 
within the 2D grid map. Although the probabilistic estima-
tion‐based approach can reduce the bearing ambiguities of 
range‐only measurements, this approach is not sufficiently 
robust to deal with large measurement noises caused by mul-
tipath propagation.

To resolve the bearing ambiguities and large measure-
ment noises of range‐only measurements, we propose a robust 
range‐only beacon mapping method to estimate the locations 
of range‐only beacons on a map. The proposed method esti-
mates the locations of range‐only beacons using the follow-
ing procedure: (i) the location of each range‐only beacon is 
initially predicted by range‐only measurement association 
(RoMA) and random sample consensus (RANSAC), and (ii) 
the location is then updated using an unscented Kalman fil-
ter (UKF)[21,22] . With the proposed method, the locations 
of range‐only beacons are mapped accurately in multipath 
environments.

The remainder of this paper is organized as follows. 
The RoMA and feature prediction using the RoMA and 
RANSAC are described in Section 2. The feature update 
using the UKF is presented in Section 3. The simulation and 
experimental results are presented in Sections 4 and 5, re-
spectively. Some concluding remarks are given in Section 6.

2  |   FEATURE PREDICTION

2.1  |  Range‐only Measurement Association
RoMA, which is motivated by the footprint association of 
sonar sensor data [23], computes two candidate locations of 
a range‐only beacon by combining two range‐only meas-
urements acquired at two positions (Figure 1). The two cir-
cle labeled zi and zj are range‐only measurements acquired 
at xi and xj, respectively. The candidate locations of the kth 
range‐only beacon can be computed using the RoMA:
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where d(xi, xj) is the distance between xi and xj, and R(xi, 
xj) and t(xi, xj) are the rotation matrix and translation vec-
tor between xi and xj, respectively. f −1

k
(xi, zi, xj, zj) is the 

first candidate location of the kth range‐only beacon, and 
f +1
k

(xi, zi, xj, zj) is the second candidate location of the kth 
range‐only beacon. Dmin is the minimum distance between 
xi and xj. Dmin was set as 0.1 m in both the simulations and 
experiment.

The mean and covariance of each candidate location of 
a range‐only beacon can be estimated by applying the un-
scented transform to the RoMA. If the kth range‐only beacon 
is observed at xi and xj, the estimated mean and covariance of 
the location of the kth range‐only beacon is computed using 
the sigma points from the augmented range‐only measure-
ment [21,22]:

where z′ and R′ are the mean and covariance of the aug-
mented range‐only measurement, respectively, Pi and Pj 
are the covariances of xi and xj, respectively, and R is the 
measurement noise of a range‐only beacon. Note that the 
augmented state contains the mobile node positions of two 
range‐only measurements. Through augmentation, their 
uncertainties, such as odometry errors, are also considered 
in estimating the mean and covariance of the location of 
a range‐only beacon. A symmetric set of sigma points is 
computed as follows:

where L is the length of the augmented range‐only mea-
surement, n is the dimension of the augmented range‐only 
measurement n = 6, and λ is computed as λ = α2(L + κ) − L 
and α(0 < α < 1) [21]. The computed sigma points are trans-
formed based on the function of the RoMA as:

The estimated mean and covariance of the candidate location of 
a range‐only beacon are computed using the weighted sum of 
the transformed sigma points:

Here, weight w[i]
g

 is used to compute the estimated mean of the 
location of a range‐only beacon and weight w[i]

c
 is used to re-

cover the estimated covariance of this location.

where β is the parameter incorporating the knowledge of the 
higher order moments of the posterior distribution. For the 
Gaussian prior, the optimal choice is β = 2 [21].

2.2  |  Feature selection and outlier removal
The proposed method uses RANSAC to determine the 
location of a range‐only beacon among two candidate 
locations determined by the RoMA and to filter out in-
correct range‐only measurements affected by multipath 
propagation. The procedure using the RANSAC‐based 
feature initialization is shown in Figure 2. To determine 
the inliers, an expected range‐only measurement from 
a candidate location of a range‐only beacon and an ob-
served range‐only measurement are compared. If the dif-
ference between the expected and observed range‐only 
measurements is smaller than the given threshold, the 
observed range‐only measurement is considered to be an 
inlier.
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F I G U R E  1   RoMA computes two candidate locations of a range‐
only beacon by combining two range‐only measurements. The black 
circles and dots represent range‐only measurements and the positions 
of a mobile device, respectively. The red boxes represent the candidate 
locations of a range‐only beacon
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The location of a range‐only beacon is sequentially updated 
using the inliers of range‐only measurements determined through 
the RANSAC‐based feature selection and outlier removal.

3  |   FEATURE UPDATE

The UKF is applied to update the mean and covariance of the 
location of a range‐only beacon [21,22]. In the UKF‐based 
feature update, a mobile node position and its uncertainty are 
also augmented to compute the sigma points:

where xp and Pp are the mean and covariance of the mobile 
node position, respectively. zp is the range‐only measurement 
at xp. The range‐only measurement noise covariance R is also 
augmented to consider the measurement noise. The sigma 
points are computed using the augmented mean and covari-
ance of the location of a range‐only beacon:

where ��

k,t−1
 and Σ�

k,t−1
 are the augmented mean and covari-

ance of the location of a range‐only beacon, respectively. The 

value of M is the dimension of a feature state. In this case, 
M = 4 and λ = α2(L + k) − M. Each sigma point � �[i]

��

k,t−1

 con-

tains the location of a range‐only beacon, mobile node posi-
tion, and measurement noise:

The observation model h is characterized by a nonlinear func-
tion and the sigma points are transformed through the observa-
tion model:

The predicted range‐only measurement ẑp at xp and its innova-
tion covariance S̄p are defined as follows:

Here, Σ̄p is the cross‐covariance between the state of a range‐
only beacon and range‐only measurement, and is calculated as 
follows:

The Kalman gain is computed using the cross‐covariance:

Finally, the mean and covariance of the n range‐only beacon are 
updated as follows:

To update the mean and covariance of the location of a range‐
only beacon, the Cholesky factorization is applied to guarantee 
the numerical stability.

4  |   SIMULATION RESULTS
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F I G U R E  2   Feature prediction using RoMA and RANSAC



112  |      PARK and LEE

used as a baseline [6]. The multipath propagation model of a 
UWB communication device was adopted to conduct more 
realistic simulations [24]. Two scenarios were used for the 
simulations: (i) a rectangular environment and (ii) an indoor 
environment.

4.1  |  Multipath propagation model
The multipath propagation model considers various charac-
teristics of UWB communication devices and the presence 
or absence of a direct path (DP) under LOS or non‐LOS 
(NLOS) conditions between a range‐only beacon and a mo-
bile node.

A DP always exists under LOS conditions. However, a DP 
may not exist under NLOS conditions. If a DP exists under 
NLOS conditions, the dominant source of a range‐only mea-
surement error is the propagation delay. This occurs when 
the speed of the transmission of a signal is slowed through 
an object. The propagation delay adds a small positive bias 
to a range‐only measurement. If a DP does not exist under 
NLOS conditions when objects such as walls, doors, or furni-
ture block a signal between a range‐only beacon and a mobile 
node, a mobile node will receive indirect signals reflected by 
the surfaces of other objects. Their paths are different from a 
blocked direct path between a range‐only beacon and a mo-
bile node. The distances of the indirect paths are longer than 
the blocked direct signal path. Therefore, a large‐positive bias 
is added to a range‐only measurement when a DP does not 
exist under NLOS conditions.

The normalized measurement error is defined as follows 
[11]:

where z and zGT are the observed and ground truth measure-
ments, respectively. The normalized measurement error can be 
modeled by considering the presence or absence of the DP and 
LOS as follows [11]:

where ψw is a zero‐mean white noise that always exists 
under both LOS and NLOS conditions, ψpd is the normalized 
propagation delay induced error under NLOS conditions 
(G = 1), and ψb is the blockage error. The blockage error 
occurs (B = 1) when the DP does not exist. The probability 

of the occurrence of a blockage error depends on the band-
width of a range‐only beacon and the configuration of the 
indoor environment.

Based on the normalized measurement error, the mul-
tipath propagation model can be defined using the following 
equation [11]:

Note that the multipath propagation model when the 
blockage error occurs under NLOS conditions has a log‐nor-
mal distribution. In this case, the normalized measurement 
noise is larger than that of the other cases. The parameters 
used to compute the multipath propagation model are shown 
in Table 1 [11].

4.2  |  Rectangular environment scenario
In this scenario, the locations of 16 range‐only beacons were 
estimated using range‐only measurements acquired at 49 po-
sitions in a simple rectangular environment. The detailed pa-
rameters are listed in Table 2.

The probability of being under NLOS conditions 
P(G  =  1) was varied from 0.01 to 0.50. Figure 3 shows 
the results of the simulations. Figures 3A and 3B show 
the mean mapping errors of the proposed method and 
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T A B L E  1   Multipath propagation model parameters

 

Parameters Value

500 MHz 3 GHz

(μm, σm) (0, 0.028) (0, 0.006)

(μpd, σpd) (0.058, 0.028) (0.03, 0.01)

(μb, σb) (−1.68, 0.88) (−1.90, 1.13)

T A B L E  2   Rectangular environment scenario parameters

  Parameters Value

UWB Bandwidth 500 MHz, 3 GHz

Environment width 40 m

Environment height 40 m

Maximum measurement 
range

25 m

P(G = 1) 0.00–0.50

P(G = 1, B = 1) 0.80

Mobile node Odometry error 0.20 m
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TOA data fusion using 500  MHz and 3  GHz range‐only 
beacons, respectively. The upper sections of these figures 
show the mean mapping errors of the proposed method and 
TOA data fusion. The mean mapping errors of the TOA 
data fusion increased rapidly as the probability of being 
under NLOS conditions increased because a least squares 
regression is highly sensitive to outliers. When 5% of the 
range‐only measurements were affected by the propagation 
delays and blockages, the mean mapping errors increased 
significantly (500  MHz: 147%, 3  GHz: 796%). However, 
the mean mapping errors of the proposed method increased 
only slightly as the probability of being under NLOS con-
ditions increased. The lower sections of these figures il-
lustrate a magnified view of the mean mapping errors of 
the proposed method. The proposed method estimated the 
locations of the range‐only beacons much more accurately 
than did the TOA data fusion even though a considerable 
portion of range‐only measurements were affected by the 
propagation delays and blockage errors. This is because the 
proposed method was able to filter out unreliable range‐
only measurements using RANSAC.

Figure 4 shows the estimated locations of range‐only 
beacons using the TOA data fusion and proposed method. 

The probability of being under NLOS conditions P(G = 1) 
was set to 0.30. The red and black dots represent the true 
and estimated locations of range‐only beacons, respec-
tively, and the gray dots represent the positions where a 
mobile node acquires range‐only measurements from 
range‐only beacons. The estimated locations of 500 MHz 
and 3 GHz range‐only beacons using the TOA data fusion 
are shown in Figures 4A and 4C respectively. The TOA 
data fusion estimated the locations of range‐only beacons 
inaccurately. In particular, the mapping errors of some 
range‐only beacons were extremely large. Specifically, 
their mapping errors were larger than several meters. In 
addition, the locations of range‐only beacons were accu-
rately estimated using the proposed method. The estimated 
locations of 500 MHz and 3 GHz range‐only beacons using 
the proposed method are shown in Figures 4B and 4D re-
spectively. The average mapping errors measured using 
the proposed method were smaller than 0.1 m (500 MHz: 
0.0273 m, 3 GHz: 0.0233 m). It is also notable that the pro-
posed method could estimate the locations of range‐only 
beacons as well as their uncertainties because the proposed 
method uses a probabilistic approach. In these figures, 
the uncertainties of the estimated locations of range‐only 

F I G U R E  3   Simulation results when varying the probabilities of being under NLOS conditions (100 runs): (A) 500 MHz bandwidth, and (B) 
3 GHz bandwidth
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beacons are also represented by the black ellipses. The size 
of each ellipse is magnified four times for better visual-
ization. The uncertainties of the locations of range‐only 
beacons can be used when the position of a mobile node is 
tracked using range‐only beacons.

4.3  |  Indoor environment scenario
In this scenario, the locations of range‐only beacons were esti-
mated in an indoor environment. The indoor environment had 
six 3 GHz range‐only beacons. The parameters for this scenario 
are listed in Table 3. To simulate range‐only measurements 
under LOS and NLOS conditions, we used a map of the en-
vironment. When no obstacles were present between the po-
sitions of a mobile node and range‐only beacon, a range‐only 
measurement was not affected by the propagation delay and 
blockage error P(G = 0). Otherwise, a range‐only measurement 

was affected by the propagation delay and blockage error. The 
range‐only measurements affected by the propagation delays 
and blockage errors were modeled based on the given probabil-
ities of being under NLOS conditions P(G = 1) and of the oc-
currence of blockage P(G = 1, B = 1). A considerable number 
of range‐only measurements were affected by the propagation 
delays and blockage errors. Approximately 41% (Table 3) of 
the range‐only measurements were affected by the propagation 
delays and blockage errors in this scenario.

Table 4 shows mapping results using the TOA data fusion 
and proposed method. The proposed method estimated the lo-
cations of range‐only beacons in dense multipath environments 
much more accurately than did the TOA data fusion.

Figure 5 shows range‐only mapping results using the TOA 
data fusion and proposed method in the indoor environment 
under NLOS conditions. The locations of range‐only beacons 
were very poorly mapped using the TOA data fusion. Every 
range‐only beacon was mapped outside of the environment 
(Figure 5). This was because of the propagation delays or 
blockage errors. If a range‐only measurement was affected by 
the propagation delay or blockage error, the measured distance 
between a mobile node and range‐only beacon tended to be lon-
ger than the ground truth distance. The average mapping error 

F I G U R E  4   Range‐only mapping 
simulation results using the TOA data 
fusion and proposed method under NLOS 
conditions. Blue dots represent the positions 
where a mobile node acquires range‐only 
measurements from range‐only beacons. 
Red dots represent the ground truth 
locations of range‐only beacons. Black 
dots and ellipses represent the estimated 
locations of range‐only beacons and their 
uncertainties (3σ). The size of each ellipse 
is magnified four times. (A) TOA data 
fusion, 500 MHz bandwidth, (B) proposed 
method, 500 MHz bandwidth, (C) TOA data 
fusion, 3 GHz bandwidth, and (D) proposed 
method, 3 GHz bandwidth

(A) (B)

(C) (D)

T A B L E  3   Indoor environment scenario parameters

  Parameters Value

UWB Bandwidth 3 GHz

Environment width 20 m

Environment height 20 m

Maximum measurement 
range

25 m

P(G = 1) 0.41

P(G = 1, B = 1) 0.80

Mobile node Odometry error 0.20 m

T A B L E  4   Simulation results in the indoor environment (100 
runs)

  Mean Std.

TOA data fusion (m) 7.3690 5.8202

Proposed (m) 0.1190 0.0260
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using the TOA data fusion was larger than several meters. In ad-
dition, the proposed method estimated more accurate locations 
of the range‐only beacons.

5  |   EXPERIMENTAL RESULTS

We conducted an experiment using a public dataset to verify 
the performance of the proposed method in a real indoor en-
vironment. The public dataset [24] was acquired using three 
3‐GHz range‐only beacons and one Pioneer 3DX mobile 
robot, which had one 2D LiDAR and several wheel encoders. 
The positions of the mobile robot were computed using the 
iterative closest point (ICP) [25].

F I G U R E  5   Range‐only mapping simulation results using the TOA data fusion method and proposed method in the indoor environment and 
under NLOS conditions. Blue dots represent the positions where a mobile node acquires range‐only measurements from range‐only beacons, and 
blue lines represent the trajectory of a mobile node. Red dots represent the ground truth locations of range‐only beacons. Black dots and ellipses 
represent the estimated locations of range‐only beacons and their uncertainties (3σ). The size of each ellipse is magnified three times. Range‐only 
mapping result using the (A) TOA data fusion and (B) proposed method

(A) (B)

FIGURE 6  Experimental range‐only mapping results using the TOA‐based data fusion and proposed method in a real indoor environment. Blue lines 
represent the trajectory of the mobile robot computed by the ICP using one 2D LiDAR and several wheel encoders. Red dots represent the ground truth 
locations of the range‐only beacons. Black dots and ellipses represent the estimated locations of range‐only beacons and their uncertainties (3σ). The 
size of each ellipse is twice magnified. (A) Range‐only mapping result using the TOA data fusion. The magenta dotted line represents the mapping error 
of the range‐only beacon #1 estimated using the TOA data fusion. (B) Range‐only mapping result using the proposed method

#1 #2

#3

#1 #2

#3

(A) (B)

T A B L E  5   Experimental results in the real indoor environment

 

Beacon ID

#1 #2 #3

TOA data 
fusion (m)

6.1067 0.1587 0.0527

Proposed (m) 0.2124 0.1393 0.0764

T A B L E  6   Measurement errors in the real indoor environment

 

Beacon ID

#1 #2 #3

|z − zGT| (m) 2.9491 0.1116 0.0866
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Figure 6 shows range‐only mapping results using the TOA 
data fusion and proposed method in the real indoor environ-
ment, and Table 5 shows mapping errors of three beacons. The 
locations of beacons #2 and #3 were accurately mapped using 
both methods, but the location of beacon #1 was inaccurately 
mapped by the TOA data fusion. Table 6 lists the mean mea-
surement errors of the three beacons. The measurement error 
of a beacon is defined as the absolute difference between the 
observed (z) and ground truth measurements (zGT). The mean 
measurement errors of beacons #2 and #3 were small. By con-
trast, the mean measurement error of beacon #1 was extremely 
large. Figure 7 shows the probability distribution of the mea-
surement errors of beacon #1. The figure verifies that range‐
only measurements from beacon #1 were heavily affected by 
the propagation delays and blockage errors. Therefore, the TOA 
data fusion inaccurately estimated the location of beacon #1. In 
addition, the proposed method estimated the location of bea-
con #1 more accurately than did the TOA data fusion. Only the 
location uncertainty of beacon #1 was slightly larger than the 
location uncertainties of other beacons.

6  |   CONCLUSION

This study proposed a robust range‐only beacon mapping 
method in a multipath environment. The study showed that 
the proposed method estimated the locations of range‐only 
beacons in a more robust fashion using the RANSAC‐based 
feature initialization with the RoMA and the UKF‐based fea-
ture update. The RANSAC‐based feature initialization with 
the RoMA predicted the initial mean and covariance of the 
location of a range‐only beacon, and it filtered out unreliable 
range‐only measurements. The UKF‐based feature updated 
the initially predicted mean and covariance of a range‐only 
beacon using reliable range‐only measurements. Moreover, 

the study showed that with the proposed method, the accu-
rate locations of range‐only beacons could be autonomously 
mapped even though a large portion of range‐only meas-
urements was affected by the multipath propagation. The 
location uncertainties of the range‐only beacons were also 
estimated using the proposed method. The performance of 
the proposed method was verified through simulations using 
a realistic sensor model and through experiments in a real 
indoor environment.
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