참고문헌
- Adey, P., & Shayer, M. (2015). The effects of cognitive acceleration. In Resnick, L. B., Asterhan, C. & Clarke, S. (Eds.), Socializing intelligence through academic talk and dialogue (pp.127-140). Washington, DC: American Educational Research Association.
- Bailin, S. (2002). Critical thinking and science education. Science & Education, 11(4), 361-375. https://doi.org/10.1023/A:1016042608621
- Barzilai, S., & Zohar, A. (2016). Epistemic (meta)cognition: Ways of thinking about knowledge and knowing. In J. A. Green, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 409-424). New York, NY: Routledge.
- Billing, D. (2007). Teaching for transfer of core/key skills in higher education: Cognitive skills. Higher education, 53(4), 483-516. https://doi.org/10.1007/s10734-005-5628-5
- Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems? Mathematical Modelling. Education, Engineering and Economics. Chichester, UK: Horwood, 222-231.
- Borromeo Ferri, R. B. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38(2), 86-95. https://doi.org/10.1007/BF02655883
- Brown, N. J., Afflerbach, P. P., & Croninger, R. G. (2014). Assessment of critical-analytic thinking. Educational Psychology Review, 26(4), 543-560. https://doi.org/10.1007/s10648-014-9280-4
- Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. Sage focus editions, 154, 136-136.
- Byrne, B. M. (2012). Multivariate applications series: Structural equation modeling with Mplus: Basic concepts, applications, and programming. New York, NY: Routledge.
- Chen, F., Curran, P. J., Bollen, K. A., Kirby, J., & Paxton, P. (2008). An empirical evaluation of the use of fixed cutoff points in RMSEA test statistic in structural equation models. Sociological methods & research, 36(4), 462-494. https://doi.org/10.1177/0049124108314720
- Chinn, C. A., & Rinehart, R. W. (2016). In J. A. Green, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 460-478). New York, NY: Routledge.
- Choi, K., Lee, Y.-S., & Park, Y. S. (2015). What CDM can tell about what students have learned: An analysis of TIMSS eighth grade mathematics. Eurasia Journal of Mathematics, Science & Technology Education, 11(6), 1563.1577. doi:10.12973/eurasia.2015.1421a
- Core State Standards Initiative. (2010). Common Core State Standards for mathematics. Retrieved from http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf
- de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199. https://doi.org/10.1007/s11336-011-9207-7
- Elby, A., Macrander, C., & Hammer, D. (2016). Epistemic cognition in science. In J. A. Green, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 113-127). New York, NY: Routledge.
- Ford, M. (2008). Disciplinary authority and accountability in scientific practice and learning. Science Education, 92(3), 404-423. https://doi.org/10.1002/sce.20263
- Greene, J. A., Sandoval, W. A., & Braten, I. (2016). Handbook of Epistemic Cognition. New York, NY: Routledge.
- Hayduk, L. A., & Glaser, D. N. (2000). Jiving the four-step, waltzing around factor analysis, and other serious fun. Structural Equation Modeling, 7(1), 1-35. https://doi.org/10.1207/S15328007SEM0701_01
- Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modeling: Guidelines for determining model fit. Journal of Business Research Methods, 6, 53-60.
- Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
- Hwang, J., Choi, K., Hand, B. (2016, November). Relationships among mathematics and science reasoning practices. Poster presented at the 38th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Tucson, AZ.
- Hwang, J., Choi, K., & Hand, B. (2020a). Examining domain-general use of reasoning across science and mathematics through performance on standardized assessments. Canadian Journal of Science, Mathematics and Technology Education, 20(3), 521-537. doi:10.1007/s42330-020-00108-4
- Hwang J. Choi, K., & Hand, B. (2020b). Epistemic Actions and Mathematics Achievement. Submitted for publication.
- Iordanou, K., Kendeou, P., & Beker, K. (2016). Argumentative reasoning. In J. A. Green, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 39-53). New York, NY: Routledge.
- Kline, R. B. (2011). Convergence of structural equation modeling and multilevel modeling. In M. Williams (Ed.), Handbook of methodological innovation. Thousand Oaks, CA: Sage.
- Lawson, A. E. (2005). What is the role of induction and deduction in reasoning and scientific inquiry?. Journal of Research in Science Teaching, 42(6), 716. https://doi.org/10.1002/tea.20067
- Mason, L. (2016). Psychological perspectives on measuring epistemic cognition. In J. A. Green, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 375-392). New York: Routledge.
- Moshman, D. (2014). Epistemic cognition and development: The psychology of justification and truth. New York, NY: Psychology Press.
- Mullis, I. V. S., Martin, M. O., Ruddock, G. J., OSullivan, C. Y., & Preuschoff, C. (2009). TIMSS 2011 assessment frameworks. Chestnut Hill, MA: TIMSS & PIRLS International Study Center Lynch School of Education, Boston College.
- Mulnix, J. W. (2012). Thinking critically about critical thinking. Educational Philosophy and Theory, 44(5), 464-479. https://doi.org/10.1111/j.1469-5812.2010.00673.x
- National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
- National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas, Washington, DC: National Academies Press.
- NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.
- O'Connor, C., Michaels, S., & Caphin, S. (2015). "Scaling Down" to Explore the Role of Talk in Learning: From District Intervention to Controlled Classroom Study. In Resnick, L. B., Asterhan, C. & Clarke, S. (Eds.), Socializing intelligence through academic talk and dialogue (pp.111-126). Washington, DC: American Educational Research Association.
- R Development Core Team. (2010). R: A language and environment for statistical computing [Computer software]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org
- Resnick, L. B., & Schantz, F. (2015). Re-thinking Intelligence: schools that build the mind. European Journal of Education, 50(3), 340-349. https://doi.org/10.1111/ejed.12139
- Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of educational research, 99(6), 323-338. https://doi.org/10.3200/JOER.99.6.323-338
- Sperber, D., Clement, F., Heintz, C., Mascaro, O., Mercier, H., Origgi, G., & Wilson, D. (2010). Epistemic vigilance. Mind & Language, 25(4), 359-393. https://doi.org/10.1111/j.1468-0017.2010.01394.x
- Steiger, J. H. (2000). Point estimation, hypothesis testing, and interval estimation using the RMSEA: Some comments and a reply to Hayduk and Glaser. Structural Equation Modeling, 7(2), 149-162. https://doi.org/10.1207/S15328007SEM0702_1
- Strauss, A. L. (1987). Qualitative analysis for social scientists. Cambridge University Press.
- Stromso, H., & Kammerer, Y. (2016). Epistemic cognition and reading for understanding in the internet age. In J. A. Green, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 230-246). New York, NY: Routledge.
- Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287-305. doi:10.1037/1082-989X.11.3.287
- Vaughn, L. (2005) The Power of Critical Thinking: Effective reasoning about ordinary and extraordinary claims. Oxford, UK: Oxford University Press.
- Webb, P., Whitlow, J. W., & Venter, D. (2016). From exploratory talk to abstract reasoning: A case for far transfer?. Educational Psychology Review, 29 565-581. https://doi.org/10.1007/s10648-016-9369-z
- Yu, C. Y. (2002). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes (Doctoral dissertation, University of California Los Angeles).
- Zawojewski, J. (2010). Problem solving versus modeling. In R Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students' mathematical modeling competencies (pp. 237-243). New York, NY: Springer.