References
- Bilal M, Rasheed T, Ahmed I, Iqbal HMN. 2017. High-value compounds from microalgae with industrial exploitability - a review. Front. Biosci. (Schol Ed) 9: 319-342. https://doi.org/10.2741/s490
- Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. 2016. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 34: 14-29. https://doi.org/10.1016/j.biotechadv.2015.12.003
- Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
- Yun JH, Cho DH, Lee S, Heo J, Tran QG, Chang YK, et al. 2018. Hybrid operation of photobioreactor and wastewater-fed open raceway ponds enhances the dominance of target algal species and algal biomass production. Algal. Res. 29: 319-329. https://doi.org/10.1016/j.algal.2017.11.037
- Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. 2010. Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell 9: 486-501. https://doi.org/10.1128/EC.00364-09
- Markou G, Nerantzis E. 2013. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol. Adv. 31: 1532-1542. https://doi.org/10.1016/j.biotechadv.2013.07.011
- Novoveska L, Franks DT, Wulfers TA, Henley WJ. 2016. Stabilizing continuous mixed cultures of microalgae. Algal Res. 13: 126-133. https://doi.org/10.1016/j.algal.2015.11.021
- Shu CH, Tsai CC, Liao WH, Chen KY, Huang HC. 2012. Effects of light quality on the accumulation of oil in a mixed culture of Chlorella sp and Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 87: 601-607. https://doi.org/10.1002/jctb.2750
- Heo J, Cho DH, Ramanan R, Oh HM, Kim HS. 2015. PhotoBiobox: a tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and CO2 sequestration. Biochem. Eng. J. 103: 193-197. https://doi.org/10.1016/j.bej.2015.07.013
- Cho DH, Choi JW, Kang Z, Kim BH, Oh HM, Kim HS, et al. 2017. Microalgal diversity fosters stable biomass productivity in open ponds treating wastewater. Sci. Rep. 7: 1-11. https://doi.org/10.1038/s41598-016-0028-x
- Cho DH, Ramanan R, Kim BH, Lee J, Kim S, Yoo C, et al. 2013. Novel approach for the development of axenic microalgal cultures from environmental samples. J. Phycol. 49: 802-810. https://doi.org/10.1111/jpy.12091
- Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35: 171-205. https://doi.org/10.1128/br.35.2.171-205.1971
- Hillebrand H, Durselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403-424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x
- Cho DH, Ramanan R, Heo J, Kang Z, Kim BH, Ahn CY, et al. 2015. Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater. Bioresour. Technol. 191: 481-487. https://doi.org/10.1016/j.biortech.2015.02.013
- Olofsson M, Karlberg M, Lage S, Ploug H. 2017. Phytoplankton community composition and primary production in the tropical tidal ecosystem, Maputo Bay (the Indian Ocean). J. Sea Res. 125: 18-25. https://doi.org/10.1016/j.seares.2017.05.007
- Park JBK, Craggs RJ, Shilton AN. 2011. Recycling algae to improve species control and harvest efficiency from a high rate algal pond. Water Res. 45: 6637-6649. https://doi.org/10.1016/j.watres.2011.09.042
- Olenina I, Hajdu S, Edler L, Andersson A. 2006. Biovolumes and sizeclasses of phytoplankton in the Baltic Sea. HELCOM Baltic Sea Environ. Proc. 106: 1-144.
- Chinnasamy S, Ramakrishnan B, Bhatnagar A, Das KC. 2009. Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. Int. J. Mol. Sci. 10: 518-532. https://doi.org/10.3390/ijms10020518
- Beardall J, Raven JA. 2004. The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43: 26-40. https://doi.org/10.2216/i0031-8884-43-1-26.1
- Beardall J, Quigg A, Raven JA. 2003. Oxygen Consumption: Photorespiration and Chlororespiration, pp. 157-181. In Larkum AWD, Douglas SE, Raven JA (eds.), Photosynthesis in Algae, Springer
- Raven JA, Kubler JE, Beardall J. 2000. Put out the light, and then put out the light. J. Mar. Biol. Assoc. UK 80: 1-25. https://doi.org/10.1017/S0025315499001526
- Tortell PD. 2000. Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. Limnol. Oceanogr. 45: 744-750. https://doi.org/10.4319/lo.2000.45.3.0744
- Hare CE, Leblanc K, DiTullio GR, Kudela RM, Zhang Y, Lee PA, et al. 2007. Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Mar. Ecol. Prog. Ser. 352: 9-16. https://doi.org/10.3354/meps07182
- Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI. 2007. Photoinhibition of photosystem II under environmental stress. BbaBioenergetics 1767: 414-421. https://doi.org/10.1016/j.bbabio.2006.11.019
- Yanguez K, Lovazzano C, Contreras-Porcia L, Ehrenfeld N. 2015. Response to oxidative stress induced by high light and carbon dioxide (CO2) in the biodiesel producer model Nannochloropsis salina (Ochrophyta, Eustigmatales). Rev. Biol. Mar. Oceanog. 50: 163-175. https://doi.org/10.4067/S0718-19572015000200003
- Sukenik A, Tchernov D, Kaplan A, Huertas E, Lubian LM, Livne A. 1997. Uptake, efflux, and photosynthetic utilization of inorganic carbon by the marine eustigmatophyte Nannochloropsis sp. J. Phycol. 33: 969-974. https://doi.org/10.1111/j.0022-3646.1997.00969.x
- Gentile MP, Blanch HW. 2001. Physiology and xanthophyll cycle activity of Nannochloropsis gaditana. Biotechnol. Bioeng. 75: 1-12. https://doi.org/10.1002/bit.1158