DOI QR코드

DOI QR Code

Structure and Foaming Properties of Viscous Exopolysaccharides from a Wild Grape-Associated Basidiomycetous Yeast Papiliotrema flavescens Formerly Known as Cryptococcus flavescens

  • Oluwa, Salomon Woye (Laboratoire d'CEnologie et Chimie Appliquee, Universite de Reims Champagne-Ardenne)
  • 투고 : 2020.03.10
  • 심사 : 2020.09.11
  • 발행 : 2020.11.28

초록

Exopolysaccharide produced by the yeast Papiliotrema flavescens, isolated from wine grape berries of Champagne vineyard, was investigated for both chemical and functional characterization. SECMALLS and colorimetric assay analyses showed that the EPS is a high MW heteropolymer (2.37 × 106 g/mol) majorily consisting of mannose, glucose, xylose and glucuronic acid as monosaccharide constituents, with two substituents (sulphate and phosphate groups), and a minor protein moiety. Structural enchainment of these carbohydrates based on methylation, GC-MS and NMR analyses revealed a linear main backbone built up of α-(1 → 3)-D-mannopyranosyl residues on which are branched side chains consisting of a single β-D-glucopyranosyluronic acid residue and β-(1 → 2)-xylopyranoses (2-5 residues). Suggestion of some xylopyranose side chains containing a mannose residue at the nonreducing terminal end was also proposed. This is first report on EPSs from the grape P. flavescens yeast with such structural characteristics. Furthermore, investigations for valuating the application performance of these EPS in relation with their structural features were carried out in 8% alcohol experiment solutions. Very exceptional viscosifying and foaming properties were reported by comparison with commercial biopolymers such as Arabic, gellan and xanthan gums. The intrinsic properties of the natural biopolymer from this wild grape-associated P. flavescens yeast make it a potential candidate for use in various biotechnology applications.

키워드

참고문헌

  1. Cilindre C, Liger-Belair G, Villaume S, Jeandet P, Marchal R. 2010. Foaming properties of various Champagne wines depending on several parameters: Grape variety, aging, protein and CO2 content. Anal. Chim. Acta 660: 164-170. https://doi.org/10.1016/j.aca.2009.10.021
  2. Pugh RJ. 2016. Bubble and Foam Chemistry. pp. 447. Cambridge University Press, UK.
  3. Li S-S, Cheng C, Li Z, Chen J-Y, Yan B, Han B-Z, et al. 2010. Yeast species associated with wine grapes in China. Int. J. Food Microbiol. 138: 85-90. https://doi.org/10.1016/j.ijfoodmicro.2010.01.009
  4. Kantor A, Kacaniova M, Kluz M. 2015. Natural microflora of wine grape berries. J. Microbiol. Biotechnol. Food Sci. 4: 32-36.
  5. Garofalo C, Tristezza M, Grieco F, Spano G, Capozzi V. 2016. From grape berries to wine: population dynamics of cultivable yeasts associated to "Nero di Troia" autochthonous grape cultivar. World J. Microbiol. Biotechnol. 32: 59. https://doi.org/10.1007/s11274-016-2017-4
  6. Varela C. 2016. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 100: 9861-9874. https://doi.org/10.1007/s00253-016-7941-6
  7. Younes B, Cilindre C, Villaume S, Parmentier M, Jeandet P, Vasserot Y. 2011. Evidence for an extracellular acid proteolytic activity secreted by living cells of Saccharomyces cerevisiae PlR1: impact on grape proteins. J. Agric. Food Chem. 59: 6239-6246. https://doi.org/10.1021/jf200348n
  8. McFadden DC, Jesus MD, Casadevall A. 2006. The physical properties of the capsular polysaccharides from Cryptococcus neoformans suggest features for capsule construction. J. Biol. Chem. 281: 1868-1875. https://doi.org/10.1074/jbc.M509465200
  9. Kuncheva M, Panchev I, Pavlova K, Russinova-Videva S, Georgieva K, Dimitrova S. 2013. Functional characteristics of an exopolysaccharide from antarctic yeast strain Cryptococcus Laurentii AL62. Biotechnol. Biotechnol. Equip. 27: 4098-4102. https://doi.org/10.5504/BBEQ.2013.0009
  10. Hashem M, Alamri SA, Hesham AE-L, Al-Qahtani FMH, Kilany M. 2014. Biocontrol of apple blue mould by new yeast strains: Cryptococcus albidus KKUY0017 and Wickerhamomyces anomalus KKUY0051 and their mode of action. Biocontrol. Sci. Technol. 24: 1137-1152. https://doi.org/10.1080/09583157.2014.926857
  11. Doco T, O'Neill MA, Pellerin P. 2001. Determination of the neutral and acidic glycosyl-residue compositions of plant polysaccharides by GC-EI-MS analysis of the trimethylsilyl methyl glycoside derivatives. Carbohydr. Polym. 46: 249-259. https://doi.org/10.1016/S0144-8617(00)00328-3
  12. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
  13. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  14. Ciucanu I, Kerek F. 1984. Rapid and simultaneous methylation of fatty and hydroxy fatty acids for gas-liquid chromatographic analysis. J. Chromatogr. A. 284: 179-185. https://doi.org/10.1016/S0021-9673(01)87813-4
  15. Maujean A, Poinsaut P, Dantan H, Brissonnet F, Cossiez E. 1990. Study of the performance and quality of the foam in sparkling wines. Bull OIV Fr. 63: 405-427.
  16. Romani C, Lencioni L, Gobbi M, Mannazzu I, Ciani M, Domizio P. 2018. Schizosaccharomyces japonicus: a polysaccharideoverproducing yeast to be used in winemaking. Fermentation 4: 14. https://doi.org/10.3390/fermentation4010014
  17. Klis FM, Boorsma A, Groot PWJD. 2006. Cell wall construction in Saccharomyces cerevisiae. Yeast 23: 185-202. https://doi.org/10.1002/yea.1349
  18. Rodrigues S, Cardoso L, da Costa AMR, Grenha A. 2015. Biocompatibility and stability of polysaccharide polyelectrolyte complexes aimed at respiratory delivery. Materials 8: 5647-5670. https://doi.org/10.3390/ma8095268
  19. Doco T, Williams P. 2013. Purification and structural characterization of a type II arabinogalactan-protein from champagne wine. Am. J. Enol Vitic. 64: 364-369. https://doi.org/10.5344/ajev.2013.13004
  20. Cordero RJB, Frases S, Guimaraes AJ, Rivera J, Casadevall A. 2011. Evidence for branching in cryptococcal capsular polysaccharides and consequences on its biological activity. Mol. Microbiol. 79: 1101-1117. https://doi.org/10.1111/j.1365-2958.2010.07511.x
  21. Ikeda R, Maeda T. 2004. Structural studies of the capsular polysaccharide of a non-neoformans Cryptococcus species identified as C. laurentii, which was reclassified as Cryptococcus flavescens, from a patient with AIDS. Carbohydr. Res. 339: 503-509. https://doi.org/10.1016/j.carres.2003.11.015
  22. Fonseca F, Frases S, Casadevall A, Fischman O, Nimrichter L, Rodrigues M. 2009. Structural and functional properties of the Trichosporon asahii glucuronoxylomannan. Fungal Genet. Biol. 46: 496-505. https://doi.org/10.1016/j.fgb.2009.03.003
  23. Vinogradov E, Petersen B, Duus J, Wasser S. 2004. The isolation, structure, and applications of the exocellular heteropolysaccharide glucuronoxylomannan produced by yellow brain mushroom Tremella mesenterica Ritz.:Fr. (Heterobasidiomycetes). Int. J. Med. Mushrooms 6: 335-346. https://doi.org/10.1615/IntJMedMushr.v6.i4.40
  24. Puff N, Cagna A, Aguie-Beghin V, Douillard R. 1998. Effect of ethanol on the structure and properties of β-Casein adsorption layers at the air/buffer interface. J. Colloid Interface Sci. 208: 405-414. https://doi.org/10.1006/jcis.1998.5846
  25. Lofgren C, Hermansson A-M. 2007. Synergistic rheological behaviour of mixed HM/LM pectin gels. Food Hydrocoll. 21: 480-486. https://doi.org/10.1016/j.foodhyd.2006.07.005
  26. Su W-F. 2013. Structure Morphology Flow of Polymer. pp. 27-59. In: Su W-F, editor Princ. Polym. Des. Synth. Berlin, Heidelberg: Springer.
  27. Dickinson E. 2011. Food colloids research: historical perspective and outlook. Adv. Colloid Interface Sci. 165: 7-13. https://doi.org/10.1016/j.cis.2010.05.007
  28. Ganzevles RA, Cohen Stuart MA, Vliet T van, de Jongh HHJ. 2006. Use of polysaccharides to control protein adsorption to the air- water interface. Food Hydrocoll. 20: 872-878. https://doi.org/10.1016/j.foodhyd.2005.08.009
  29. Tian H, Yin X, Zeng Q, Zhu L, Chen J. 2015. Isolation, structure, and surfactant properties of polysaccharides from Ulva lactuca L. from South China Sea. Int. J. Biol. Macromol. 79: 577-582. https://doi.org/10.1016/j.ijbiomac.2015.05.031
  30. Abou-Saleh K, Aguie-Beghin V, Foulon L, Valade M, Douillard R. 2009. Relations between the air/wine adsorption layer and the bubble collar stability in experimental and commercial champagnes. Colloids Surf. Physicochem. Eng. Asp. 344: 86-96. https://doi.org/10.1016/j.colsurfa.2009.04.013
  31. Coelho E, Reis A, Domingues MRM, Rocha SM, Coimbra MA. 2011. Synergistic effect of high and low molecular weight molecules in the foamability and foam stability of sparkling wines. J. Agric. Food Chem. 59: 3168-3179. https://doi.org/10.1021/jf104033c
  32. Martinez AC, Rio E, Delon G, Saint-Jalmes A, Langevin D, Binks BP. 2008. On the origin of the remarkable stability of aqueous foams stabilised by nanoparticles: link with microscopic surface properties. Soft Matter 4: 1531-1535. https://doi.org/10.1039/b804177f
  33. Zhang X, Liu J. 2011. Effect of arabic gum and xanthan gum on the stability of pesticide in water emulsion. J. Agric. Food Chem. 59: 1308-1315. https://doi.org/10.1021/jf1034459
  34. Lopez-Barajas M, Viu-Marco A, Lopez-Tamames E, Buxaderas S, de la Torre-Boronat MC. 1997. Foaming in grape juices of white varieties. J. Agric. Food Chem. 45: 2526-2529. https://doi.org/10.1021/jf9607369
  35. Castellani O, Gaillard C, Vie V, Al-Assaf S, Axelos M, Phillips GO, et al. 2010. Hydrocolloids with emulsifying capacity. Part 3 - Adsorption and structural properties at the air-water surface. Food Hydrocoll. 24: 131-141. https://doi.org/10.1016/j.foodhyd.2009.07.009

피인용 문헌

  1. The restructuring of grape berry waxes by calcium changes the surface microbiota vol.150, pp.no.pb, 2020, https://doi.org/10.1016/j.foodres.2021.110812
  2. Production and Chemical Characterization of Exopolysaccharides by Antarctic Yeasts Vishniacozyma victoriae and Tremellomycetes sp. vol.12, pp.4, 2020, https://doi.org/10.3390/app12041805