References
- Cilindre C, Liger-Belair G, Villaume S, Jeandet P, Marchal R. 2010. Foaming properties of various Champagne wines depending on several parameters: Grape variety, aging, protein and CO2 content. Anal. Chim. Acta 660: 164-170. https://doi.org/10.1016/j.aca.2009.10.021
- Pugh RJ. 2016. Bubble and Foam Chemistry. pp. 447. Cambridge University Press, UK.
- Li S-S, Cheng C, Li Z, Chen J-Y, Yan B, Han B-Z, et al. 2010. Yeast species associated with wine grapes in China. Int. J. Food Microbiol. 138: 85-90. https://doi.org/10.1016/j.ijfoodmicro.2010.01.009
- Kantor A, Kacaniova M, Kluz M. 2015. Natural microflora of wine grape berries. J. Microbiol. Biotechnol. Food Sci. 4: 32-36.
- Garofalo C, Tristezza M, Grieco F, Spano G, Capozzi V. 2016. From grape berries to wine: population dynamics of cultivable yeasts associated to "Nero di Troia" autochthonous grape cultivar. World J. Microbiol. Biotechnol. 32: 59. https://doi.org/10.1007/s11274-016-2017-4
- Varela C. 2016. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 100: 9861-9874. https://doi.org/10.1007/s00253-016-7941-6
- Younes B, Cilindre C, Villaume S, Parmentier M, Jeandet P, Vasserot Y. 2011. Evidence for an extracellular acid proteolytic activity secreted by living cells of Saccharomyces cerevisiae PlR1: impact on grape proteins. J. Agric. Food Chem. 59: 6239-6246. https://doi.org/10.1021/jf200348n
- McFadden DC, Jesus MD, Casadevall A. 2006. The physical properties of the capsular polysaccharides from Cryptococcus neoformans suggest features for capsule construction. J. Biol. Chem. 281: 1868-1875. https://doi.org/10.1074/jbc.M509465200
- Kuncheva M, Panchev I, Pavlova K, Russinova-Videva S, Georgieva K, Dimitrova S. 2013. Functional characteristics of an exopolysaccharide from antarctic yeast strain Cryptococcus Laurentii AL62. Biotechnol. Biotechnol. Equip. 27: 4098-4102. https://doi.org/10.5504/BBEQ.2013.0009
- Hashem M, Alamri SA, Hesham AE-L, Al-Qahtani FMH, Kilany M. 2014. Biocontrol of apple blue mould by new yeast strains: Cryptococcus albidus KKUY0017 and Wickerhamomyces anomalus KKUY0051 and their mode of action. Biocontrol. Sci. Technol. 24: 1137-1152. https://doi.org/10.1080/09583157.2014.926857
- Doco T, O'Neill MA, Pellerin P. 2001. Determination of the neutral and acidic glycosyl-residue compositions of plant polysaccharides by GC-EI-MS analysis of the trimethylsilyl methyl glycoside derivatives. Carbohydr. Polym. 46: 249-259. https://doi.org/10.1016/S0144-8617(00)00328-3
- DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
- Ciucanu I, Kerek F. 1984. Rapid and simultaneous methylation of fatty and hydroxy fatty acids for gas-liquid chromatographic analysis. J. Chromatogr. A. 284: 179-185. https://doi.org/10.1016/S0021-9673(01)87813-4
- Maujean A, Poinsaut P, Dantan H, Brissonnet F, Cossiez E. 1990. Study of the performance and quality of the foam in sparkling wines. Bull OIV Fr. 63: 405-427.
- Romani C, Lencioni L, Gobbi M, Mannazzu I, Ciani M, Domizio P. 2018. Schizosaccharomyces japonicus: a polysaccharideoverproducing yeast to be used in winemaking. Fermentation 4: 14. https://doi.org/10.3390/fermentation4010014
- Klis FM, Boorsma A, Groot PWJD. 2006. Cell wall construction in Saccharomyces cerevisiae. Yeast 23: 185-202. https://doi.org/10.1002/yea.1349
- Rodrigues S, Cardoso L, da Costa AMR, Grenha A. 2015. Biocompatibility and stability of polysaccharide polyelectrolyte complexes aimed at respiratory delivery. Materials 8: 5647-5670. https://doi.org/10.3390/ma8095268
- Doco T, Williams P. 2013. Purification and structural characterization of a type II arabinogalactan-protein from champagne wine. Am. J. Enol Vitic. 64: 364-369. https://doi.org/10.5344/ajev.2013.13004
- Cordero RJB, Frases S, Guimaraes AJ, Rivera J, Casadevall A. 2011. Evidence for branching in cryptococcal capsular polysaccharides and consequences on its biological activity. Mol. Microbiol. 79: 1101-1117. https://doi.org/10.1111/j.1365-2958.2010.07511.x
- Ikeda R, Maeda T. 2004. Structural studies of the capsular polysaccharide of a non-neoformans Cryptococcus species identified as C. laurentii, which was reclassified as Cryptococcus flavescens, from a patient with AIDS. Carbohydr. Res. 339: 503-509. https://doi.org/10.1016/j.carres.2003.11.015
- Fonseca F, Frases S, Casadevall A, Fischman O, Nimrichter L, Rodrigues M. 2009. Structural and functional properties of the Trichosporon asahii glucuronoxylomannan. Fungal Genet. Biol. 46: 496-505. https://doi.org/10.1016/j.fgb.2009.03.003
- Vinogradov E, Petersen B, Duus J, Wasser S. 2004. The isolation, structure, and applications of the exocellular heteropolysaccharide glucuronoxylomannan produced by yellow brain mushroom Tremella mesenterica Ritz.:Fr. (Heterobasidiomycetes). Int. J. Med. Mushrooms 6: 335-346. https://doi.org/10.1615/IntJMedMushr.v6.i4.40
- Puff N, Cagna A, Aguie-Beghin V, Douillard R. 1998. Effect of ethanol on the structure and properties of β-Casein adsorption layers at the air/buffer interface. J. Colloid Interface Sci. 208: 405-414. https://doi.org/10.1006/jcis.1998.5846
- Lofgren C, Hermansson A-M. 2007. Synergistic rheological behaviour of mixed HM/LM pectin gels. Food Hydrocoll. 21: 480-486. https://doi.org/10.1016/j.foodhyd.2006.07.005
- Su W-F. 2013. Structure Morphology Flow of Polymer. pp. 27-59. In: Su W-F, editor Princ. Polym. Des. Synth. Berlin, Heidelberg: Springer.
- Dickinson E. 2011. Food colloids research: historical perspective and outlook. Adv. Colloid Interface Sci. 165: 7-13. https://doi.org/10.1016/j.cis.2010.05.007
- Ganzevles RA, Cohen Stuart MA, Vliet T van, de Jongh HHJ. 2006. Use of polysaccharides to control protein adsorption to the air- water interface. Food Hydrocoll. 20: 872-878. https://doi.org/10.1016/j.foodhyd.2005.08.009
- Tian H, Yin X, Zeng Q, Zhu L, Chen J. 2015. Isolation, structure, and surfactant properties of polysaccharides from Ulva lactuca L. from South China Sea. Int. J. Biol. Macromol. 79: 577-582. https://doi.org/10.1016/j.ijbiomac.2015.05.031
- Abou-Saleh K, Aguie-Beghin V, Foulon L, Valade M, Douillard R. 2009. Relations between the air/wine adsorption layer and the bubble collar stability in experimental and commercial champagnes. Colloids Surf. Physicochem. Eng. Asp. 344: 86-96. https://doi.org/10.1016/j.colsurfa.2009.04.013
- Coelho E, Reis A, Domingues MRM, Rocha SM, Coimbra MA. 2011. Synergistic effect of high and low molecular weight molecules in the foamability and foam stability of sparkling wines. J. Agric. Food Chem. 59: 3168-3179. https://doi.org/10.1021/jf104033c
- Martinez AC, Rio E, Delon G, Saint-Jalmes A, Langevin D, Binks BP. 2008. On the origin of the remarkable stability of aqueous foams stabilised by nanoparticles: link with microscopic surface properties. Soft Matter 4: 1531-1535. https://doi.org/10.1039/b804177f
- Zhang X, Liu J. 2011. Effect of arabic gum and xanthan gum on the stability of pesticide in water emulsion. J. Agric. Food Chem. 59: 1308-1315. https://doi.org/10.1021/jf1034459
- Lopez-Barajas M, Viu-Marco A, Lopez-Tamames E, Buxaderas S, de la Torre-Boronat MC. 1997. Foaming in grape juices of white varieties. J. Agric. Food Chem. 45: 2526-2529. https://doi.org/10.1021/jf9607369
- Castellani O, Gaillard C, Vie V, Al-Assaf S, Axelos M, Phillips GO, et al. 2010. Hydrocolloids with emulsifying capacity. Part 3 - Adsorption and structural properties at the air-water surface. Food Hydrocoll. 24: 131-141. https://doi.org/10.1016/j.foodhyd.2009.07.009
Cited by
- The restructuring of grape berry waxes by calcium changes the surface microbiota vol.150, pp.no.pb, 2020, https://doi.org/10.1016/j.foodres.2021.110812
- Production and Chemical Characterization of Exopolysaccharides by Antarctic Yeasts Vishniacozyma victoriae and Tremellomycetes sp. vol.12, pp.4, 2020, https://doi.org/10.3390/app12041805