DOI QR코드

DOI QR Code

Metabolite Profiling and Microbial Community of Traditional Meju Show Primary and Secondary Metabolite Differences Correlated with Antioxidant Activities

  • Song, Da Hye (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Chun, Byung Hee (Department of Life Science, Chung-Ang University) ;
  • Lee, Sunmin (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Reddy, Chagam Koteswara (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Jeon, Che Ok (Department of Life Science, Chung-Ang University) ;
  • Lee, Choong Hwan (Department of Bioscience and Biotechnology, Konkuk University)
  • Received : 2020.07.21
  • Accepted : 2020.09.01
  • Published : 2020.11.28

Abstract

Meju, a type of fermented soybean paste, is used as a starter in the preparation of various Korean traditional soybean-based foods. In this study, we performed Illumina-MiSeq paired-end sequencing for microbial communities and mass spectrometry analysis for metabolite profiling to investigate the differences between 11 traditional meju products from different regions across Korea. Even though the bacterial and fungal communities showed remarkable variety, major genera including Bacillus, Enterococcus, Variovorax, Pediococcus, Weissella, and Aspergillus were detected in every sample of meju. The metabolite profile patterns of the 11 samples were clustered into two main groups: group I (M1-5) and group II (M6-11). The metabolite analysis indicated a relatively higher amino acid content in group I, while group II exhibited higher isoflavone, soyasaponin, and lysophospholipid contents. The bioactivity analysis proved that the ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was higher in group II and the FRAP (ferric reducing antioxidant power) activity was higher in group I. The correlation analysis revealed that the ABTS activity was isoflavonoid, lipid, and soyasaponin related, whereas the FRAP activity was amino acid and flavonoid related. These results suggest that the antioxidant activities of meju are critically influenced by the microbiome and metabolite dynamics.

Keywords

References

  1. Lee S, Lee S, Singh D, Oh JY, Jeon EJ, Ryu HS, et al. 2017. Comparative evaluation of microbial diversity and metabolite profiles in doenjang, a fermented soybean paste, during the two different industrial manufacturing processes. Food Chem. 221: 1578-1586. https://doi.org/10.1016/j.foodchem.2016.10.135
  2. Lee EM, Park SJ, Lee J-E, Lee BM, Shin BK, Kang DJ, et al. 2019. Highly geographical specificity of metabolomic traits among Korean domestic soybeans (Glycine max). Food Res. Int. 120: 12-18. https://doi.org/10.1016/j.foodres.2019.02.021
  3. Iqbal N, Zhang Q, Wu H, Yang C, Deng J, Qin W, et al. 2018. Soybean (Glycine max L.) germplasm screening and geographical determination based on targeted isoflavone metabolomics. Appl. Ecol. Env. Res. 16: 3933-3953. https://doi.org/10.15666/aeer/1604_39333953
  4. Yokota T, Hattori T, Ohishi H, Hasegawa K, Watanabe K. 1996. The effect of antioxidant-containing fraction from fermented soybean food on atherosclerosis development in cholesterol-fed rabbits. LWT-Food Sci. Technol. 29: 751-755. https://doi.org/10.1006/fstl.1996.0117
  5. Shin D, Jeong D. 2015. Korean traditional fermented soybean products: Jang. J. Ethn. Foods 2: 2-7. https://doi.org/10.1016/j.jef.2015.02.002
  6. Shukla S, Choi TB, Park H-K, Kim M, Lee IK, Kim J-K. 2010. Determination of non-volatile and volatile organic acids in Korean traditional fermented soybean paste (Doenjang). Food Chem. Toxicol. 48: 2005-2010. https://doi.org/10.1016/j.fct.2010.04.034
  7. Kum S-J, Yang S-O, Lee SM, Chang P-S, Choi YH, Lee JJ, et al. 2015. Effects of Aspergillus species inoculation and their enzymatic activities on the formation of volatile components in fermented soybean paste (doenjang). J. Agric. Food Chem. 63: 1401-1418. https://doi.org/10.1021/jf5056002
  8. Lee JH, Kim TW, Lee H, Chang H, Kim HY. 2010. Determination of microbial diversity in meju, fermented cooked soya beans, using nested PCR-denaturing gradient gel electrophoresis. Lett. Appl. Microbiol. 51: 388-394. https://doi.org/10.1111/j.1472-765X.2010.02906.x
  9. Kim Y-S, Kim M-C, Kwon S-W, Kim S-J, Park I-C, Ka J-O, et al. 2011. Analyses of bacterial communities in meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods. J. Microbiol. 49: 340-348. https://doi.org/10.1007/s12275-011-0302-3
  10. Wishart DS. 2008. Metabolomics: applications to food science and nutrition research. Trends Food Sci. Technol. 19: 482-493. https://doi.org/10.1016/j.tifs.2008.03.003
  11. Lee S, Seo M-H, Oh D-K, Lee CH. 2014. Targeted metabolomics for Aspergillus oryzae-mediated biotransformation of soybean isoflavones, showing variations in primary metabolites. Biosci. Biotechnol. Biochem. 78: 167-174. https://doi.org/10.1080/09168451.2014.877827
  12. Ko B-K, Ahn H-J, van den Berg F, Lee C-H, Hong Y-S. 2009. Metabolomic insight into soy sauce through 1H NMR spectroscopy. J. Agric. Food Chem. 57: 6862-6870. https://doi.org/10.1021/jf901454j
  13. Chun BH, Kim KH, Jeong SE, Jeon CO. 2020. The effect of salt concentrations on the fermentation of doenjang, a traditional Korean fermented soybean paste. Food Microbiol. 86: 103329. https://doi.org/10.1016/j.fm.2019.103329
  14. Lee S, Oh D-G, Lee S, Kim GR, Lee JS, Son YK, et al. 2015. Chemotaxonomic metabolite profiling of 62 indigenous plant species and its correlation with bioactivities. Molecules 20: 19719-19734. https://doi.org/10.3390/molecules201119652
  15. Son SY, Kim NK, Lee S, Singh D, Kim GR, Lee JS, et al. 2016. Metabolite fingerprinting, pathway analyses, and bioactivity correlations for plant species belonging to the Cornaceae, Fabaceae, and Rosaceae families. Plant Cell Rep. 35: 1917-1931. https://doi.org/10.1007/s00299-016-2006-y
  16. Lee SY, Kim HY, Lee S, Lee JM, Muthaiya MJ, Kim BS, et al. 2012. Mass spectrometry-based metabolite profiling and bacterial diversity characterization of Korean traditional meju during fermentation. J. Microbiol. Biotechnol. 22: 1523-1531. https://doi.org/10.4014/jmb.1207.07003
  17. Xie M, Wu J, An F, Yue X, Tao D, Wu R, et al. 2019. An integrated metagenomic/metaproteomic investigation of microbiota in dajiang-meju, a traditional fermented soybean product in Northeast China. Food Res. Int. 115: 414-424. https://doi.org/10.1016/j.foodres.2018.10.076
  18. Kang HJ, Yang HJ, Kim MJ, Han E-S, Kim H-J, Kwon DY. 2011. Metabolomic analysis of meju during fermentation by ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS). Food Chem. 127: 1056-1064. https://doi.org/10.1016/j.foodchem.2011.01.080
  19. Jung WY, Jung JY, Lee HJ, Jeon CO. 2016. Functional characterization of bacterial communities responsible for fermentation of Doenjang: a traditional Korean fermented soybean paste. Front. Microbiol. 7: 827.
  20. Oh D-G, Jang YK, Woo JE, Kim J-S, Lee CH. 2016. Metabolomics reveals the effect of garlic on antioxidant-and protease-activities during Cheonggukjang (fermented soybean paste) fermentation. Food Res. Int. 82: 86-94. https://doi.org/10.1016/j.foodres.2016.01.019
  21. Shin GR, Lee S, Jang ES, Shin HW, Moon BS, Lee CH. 2016. Metabolomics reveal that amino acids are the main contributors to antioxidant activity in wheat and rice gochujangs (Korean fermented red pepper paste). Food Res. Int. 87: 10-17. https://doi.org/10.1016/j.foodres.2016.06.015
  22. Lee GM, Suh DH, Jung ES, Lee CH. 2016. Metabolomics provides quality characterization of commercial gochujang (fermented pepper paste). Molecules 21: 921. https://doi.org/10.3390/molecules21070921
  23. Kim D-H, Lim D-W, Bai S, Chun S-B. 1997. Fermentation characteristics of whole soybean meju model system inoculated with 4 Bacillus strains. Korean J. Food Sci. Technol. 29: 1006-1015.
  24. Jung JY, Lee SH, Jeon CO. 2014. Microbial community dynamics during fermentation of doenjang-meju, traditional Korean fermented soybean. Int. J. Food Microbiol. 185: 112-120. https://doi.org/10.1016/j.ijfoodmicro.2014.06.003
  25. Nogueira M, Nehls U, Hampp R, Poralla K, Cardoso E. 2007. Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298: 273-284. https://doi.org/10.1007/s11104-007-9379-1
  26. Rhyu MR, Kim EY 2011. Umami taste characteristics of water extract of Doenjang, a Korean soybean paste:Low-molecular acidic peptides may be a possible clue to the taste. Food Chem. 127: 1210-1215. https://doi.org/10.1016/j.foodchem.2011.01.128
  27. Solms J. 1969. Taste of amino acids, peptides, and proteins. J. Agric. Food Chem. 17: 686-688. https://doi.org/10.1021/jf60164a016
  28. Namgung HJ, Park HJ, Cho IH, Choi HK, Kwon DY, Shim SM, et al. 2010. Metabolite profiling of doenjang, fermented soybean paste, during fermentation. J. Sci. Food Agric. 90: 1926-1935. https://doi.org/10.1002/jsfa.4036
  29. Lee SY, Lee S, Lee S, Oh JY, Jeon EJ, Ryu HS, et al. 2014. Primary and secondary metabolite profiling of doenjang, a fermented soybean paste during industrial processing. Food Chem. 165: 157-166. https://doi.org/10.1016/j.foodchem.2014.05.089
  30. Dalluge JJ, Eliason E, Frazer S. 2003. Simultaneous identification of soyasaponins and isoflavones and quantification of soyasaponin Bb in soy products, using liquid chromatography/electrospray ionization-mass spectrometry. J. Agric. Food Chem. 51: 3520-3524. https://doi.org/10.1021/jf030036l
  31. Rostagno MA, Villares A, Guillamón E, Garcia-Lafuente A, Martinez J. 2009. Sample preparation for the analysis of isoflavones from soybeans and soy foods. J. Chromatogr. A. 1216: 2-29. https://doi.org/10.1016/j.chroma.2008.11.035
  32. Krizova L, Dadakova K, Kasparovska J, Kasparovsky T. 2019. Isoflavones. Molecules 24: 1076. https://doi.org/10.3390/molecules24061076
  33. Jang CH, Park CS, Lim JK, Kim JH, Kwon DY, Kim Y-S, et al. 2008. Metabolism of isoflavone derivatives during manufacturing of traditional Meju and Doenjang. Food Sci. Biotechnol. 17: 442-445.
  34. Kwon DY, Hong SM, Ahn IS, Kim MJ, Yang HJ, Park S. 2011. Isoflavonoids and peptides from meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutrition 27: 244-252. https://doi.org/10.1016/j.nut.2010.02.004
  35. Berhow MA, Kong SB, Vermillion KE, Duval SM. 2006. Complete quantification of group A and group B soyasaponins in soybeans. J. Agric. Food Chem. 54: 2035-2044. https://doi.org/10.1021/jf053072o
  36. Okubo K, Iijima M, Kobayashi Y, Yoshikoshi M, Uchida T, Kudou S. 1992. Components responsible for the undesirable taste of soybean seeds. Biosci. Biotechnol. Biochem. 56: 99-103. https://doi.org/10.1271/bbb.56.99
  37. Hong S-W, Heo H, Yang J-h, Han M, Kim D-H, Kwon YK. 2013. Soyasaponin I improved neuroprotection and regeneration in memory deficient model rats. PLoS One 8: e81556. https://doi.org/10.1371/journal.pone.0081556
  38. Koratkar R, Rao AV. 1997. Effect of soya bean saponins on azoxymethane-induced preneoplastic lesions in the colon of mice. Nutr. Cancer 27: 206-209. https://doi.org/10.1080/01635589709514526
  39. Jakubczyk K, Kochman J, Kwiatkowska A, Kaldunska J, Dec K, Kawczuga D, et al. 2020. Antioxidant properties and nutritional composition of matcha green tea. Foods 9: 483. https://doi.org/10.3390/foods9040483
  40. Lee JH, Jeon JK, Kim SG, Kim SH, Chun T, Imm JY. 2011. Comparative analyses of total phenols, flavonoids, saponins and antioxidant activity in yellow soy beans and mung beans. Int. J. Food Sci. Technol. 46: 2513-2519. https://doi.org/10.1111/j.1365-2621.2011.02775.x
  41. Pannala AS, Chan TS, O'Brien PJ, Rice-Evans CA. 2001. Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics. Biochem. Biophys. Res. Commun. 282: 1161-1168. https://doi.org/10.1006/bbrc.2001.4705
  42. Okubo K, Yoshiki Y. 1996. Oxygen-radical-scavenging activity of DDMP-conjugated saponins and physiological role in leguminous plant, Saponins used in food and agriculture, Ed. Springer, pp. 141-154.
  43. Chirinang P, Intarapichet K-O. 2009. Amino acids and antioxidant properties of the oyster mushrooms, Pleurotus ostreatus and Pleurotus sajor-caju. Sci. Asia 35: 326-331. https://doi.org/10.2306/scienceasia1513-1874.2009.35.326
  44. Martinez-Valverde I, Periago MJ, Provan G, Chesson A. 2002. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J. Sci. Food Agric. 82: 323-330. https://doi.org/10.1002/jsfa.1035