DOI QR코드

DOI QR Code

Towards a Miniaturized Culture Screening for Cellulolytic Fungi and Their Agricultural Lignocellulosic Degradation

  • Arnthong, Jantima (National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA)) ;
  • Siamphan, Chatuphon (National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA)) ;
  • Chuaseeharonnachai, Charuwan (National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA)) ;
  • Boonyuen, Nattawut (National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA)) ;
  • Suwannarangsee, Surisa (National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA))
  • Received : 2020.07.06
  • Accepted : 2020.08.25
  • Published : 2020.11.28

Abstract

The substantial use of fungal enzymes to degrade lignocellulosic plant biomass has widely been attributed to the extensive requirement of powerful enzyme-producing fungal strains. In this study, a two-step screening procedure for finding cellulolytic fungi, involving a miniaturized culture method with shake-flask fermentation, was proposed and demonstrated. We isolated 297 fungal strains from several cellulose-containing samples found in two different locations in Thailand. By using this screening strategy, we then selected 9 fungal strains based on their potential for cellulase production. Through sequence-based identification of these fungal isolates, 4 species in 4 genera were identified: Aspergillus terreus (3 strains: AG466, AG438 and AG499), Penicillium oxalicum (4 strains: AG452, AG496, AG498 and AG559), Talaromyces siamensis (1 strain: AG548) and Trichoderma afroharzianum (1 strain: AG500). After examining their lignocellulose degradation capacity, our data showed that P. oxalicum AG452 exhibited the highest glucose yield after saccharification of pretreated sugarcane trash, cassava pulp and coffee silverskin. In addition, Ta. siamensis AG548 produced the highest glucose yield after hydrolysis of pretreated sugarcane bagasse. Our study demonstrated that the proposed two-step screening strategy can be further applied for discovering potential cellulolytic fungi isolated from various environmental samples. Meanwhile, the fungal strains isolated in this study will prove useful in the bioconversion of agricultural lignocellulosic residues into valuable biotechnological products.

Keywords

References

  1. Mohanty AK, Misra M, Drzal LT. 2002. Sustainable Bio-Composites from renewable resources: Opportunities and challenges in the green materials world. J. Polym. Environ. 10: 19-26. https://doi.org/10.1023/A:1021013921916
  2. Bessou C, Ferchaud F, Gabrielle B, Mary B. 2011. Biofuels, greenhouse gases and climate change. A review. Agron. Sustain. Dev. 31: 1. https://doi.org/10.1051/agro/2009039
  3. Dessie W, Luo X, Wang M, Feng L, Liao Y, Wang Z, et al. 2020. Current advances on waste biomass transformation into value-added products. Appl. Microbiol. Biotechnol. 104: 4757-4770. https://doi.org/10.1007/s00253-020-10567-2
  4. Tripathi N, Hills CD, Singh RS, Atkinson CJ. 2019. Biomass waste utilisation in low-carbon products: harnessing a major potential resource. NPJ Climate Atmosph. Sci. 2: 35. https://doi.org/10.1038/s41612-019-0093-5
  5. Lin CY, Eudes A. 2020. Strategies for the production of biochemicals in bioenergy crops. Biotechnol. Biofuels 13: 71. https://doi.org/10.1186/s13068-020-01707-x
  6. Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS. 2018. The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 264: 370-381. https://doi.org/10.1016/j.biortech.2018.06.004
  7. Kohli K, Prajapati R, Sharma BK. 2019. Bio-Based chemicals from renewable biomass for integrated biorefineries. Energies 12: 233. https://doi.org/10.3390/en12020233
  8. Vera I, Hoefnagels R, van der Kooij A, Moretti C, Junginger M. 2020. A carbon footprint assessment of multi-output biorefineries with international biomass supply: a case study for the Netherlands. Biofuel. Bioprod. Bior. 14: 198-224. https://doi.org/10.1002/bbb.2052
  9. Lugo-Pimentel M, Boboescu I, Beigbeder J-B, Duret X, Wolfaardt F, Ghislain T, et al. 2020. Biorefinery done right. Int. J. Energy Prod. Management 5: 35-47. https://doi.org/10.2495/eq-v5-n1-35-47
  10. Yang TC, Kumaran J, Amartey S, Maki M, Li X, Lu F, et al. 2014. Chapter 5 - Biofuels and Bioproducts Produced through Microbial Conversion of Biomass, pp. 71-93. In Gupta VK, Tuohy MG, Kubicek CP, Saddler J, Xu F (eds.), Bioenergy Research: Advances and Applications, Ed. Elsevier, Amsterdam
  11. Cianchetta S, Galletti S, Burzi PL, Cerato C. 2010. A novel microplate-based screening strategy to assess the cellulolytic potential of Trichoderma strains. Biotechnol. Bioeng. 107: 461-468. https://doi.org/10.1002/bit.22816
  12. Siqueira JGW, Rodrigues C, Vandenberghe LPD, Woiciechowski AL, Soccol CR. 2020. Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: a review. Biomass Bioenerg. 132: 105419. https://doi.org/10.1016/j.biombioe.2019.105419
  13. Suwannarangsee S, Arnthong J, Eurwilaichitr L, Champreda V. 2014. Production and Characterization of multi-polysaccharide degrading enzymes from Aspergillus aculeatus BCC199 for saccharification of agricultural residues. J. Microbiol. Biotechnol. 24: 1427-1437. https://doi.org/10.4014/jmb.1406.06050
  14. Juturu V, Wu JC. 2012. Microbial xylanases: Engineering, production and industrial applications. Biotechnol. Adv. 30: 1219-1227. https://doi.org/10.1016/j.biotechadv.2011.11.006
  15. Marques NP, Pereira JD, Gomes E, da Silva R, Araujo AR, Ferreira H, et al. 2018. Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind. Crop Prod. 122: 66-75. https://doi.org/10.1016/j.indcrop.2018.05.022
  16. Contreras F, Pramanik S, Rozhkova AM, Zorov IN, Korotkova O, Sinitsyn AP, et al. 2020. Engineering robust cellulases for tailored lignocellulosic degradation cocktails. Int. J. Mol. Sci. 21: 1589. https://doi.org/10.3390/ijms21051589
  17. Jung YR, Park JM, Heo SY, Hong WK, Lee SM, Oh BR, et al. 2015. Cellulolytic enzymes produced by a newly isolated soil fungus Penicillium sp. TG2 with potential for use in cellulosic ethanol production. Renew. Energy 76: 66-71. https://doi.org/10.1016/j.renene.2014.10.064
  18. de Souza MF, da Silva AS, Bon EPS. 2018. A novel Trichoderma harzianum strain from the Amazon Forest with high cellulolytic capacity. Biocatal. Agric. Biotechnol. 14: 183-188. https://doi.org/10.1016/j.bcab.2018.03.008
  19. Druzhinina IS, Kubicek CP. 2017. Genetic engineering of Trichoderma reesei cellulases and their production. Microb. Biotechnol. 10: 1485-1499. https://doi.org/10.1111/1751-7915.12726
  20. Okeke BC, Hall RW, Nanjundaswamy A, Thomson MS, Deravi Y, Sawyer L, et al. 2015. Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from black belt sites. Microbiol. Res. 175: 24-33. https://doi.org/10.1016/j.micres.2015.03.001
  21. Coughlan MP. 1985. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Eng. Rev. 3: 39-110. https://doi.org/10.1080/02648725.1985.10647809
  22. Dashtban M, Schraft H, Qin WS. 2009. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 5: 578-595. https://doi.org/10.7150/ijbs.5.578
  23. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. 2008. A rapid and easy method for the detection of microbial cellulases on agar plates using gram's iodine. Curr. Microbiol. 57: 503-507. https://doi.org/10.1007/s00284-008-9276-8
  24. Alberto F, Navarro D, de Vries RP, Asther M, Record E. 2009. Technical advance in fungal biotechnology: development of a miniaturized culture method and an automated high-throughput screening. Lett. Appl. Microbiol. 49: 278-282. https://doi.org/10.1111/j.1472-765X.2009.02655.x
  25. Beneyton T, Wijaya IPM, Postros P, Najah M, Leblond P, Couvent A, et al. 2016. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics. Sci. Rep. 6: 27223. https://doi.org/10.1038/srep27223
  26. Linde T, Hansen NB, Lubeck M, Lubeck PS. 2014. Fermentation in 24-well plates is an efficient screening platform for filamentous fungi. Lett. Appl. Microbiol. 59: 224-230. https://doi.org/10.1111/lam.12268
  27. Shin WS, Lee D, Kim S, Jeong YS, Chun GT. 2017. Development of miniaturized culture systems for large screening of mycelial fungal cells of Aspergillus terreus producing itaconic acid. J. Microbiol. Biotechnol. 27: 101-111. https://doi.org/10.4014/jmb.1610.10037
  28. Mandels M, Weber J. 1969. The Production of Cellulases, pp. 391-414. Cellulases and Their Applications, Ed. American Chemical Society
  29. Chuaseeharonnachai C, Suetrong S, Nuankaew S, Somrithipol S, Hongsanan SN, Srikitikulchai P, et al. 2020. Synnematotriadelphia gen. nov. (S. stilboidea comb. nov. and S. synnematofera comb. nov.) and Triadelphia hexaformispora sp. nov. in the family Triadelphiaceae. Mycol. Prog. 19: 127-137. https://doi.org/10.1007/s11557-019-01547-6
  30. White, Bruns T, Lee S, Taylor J. 1990. White, T. J., T. D. Bruns, S. B. Lee, and J. W. Taylor. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics, pp. 315-322. Ed.
  31. Rehner SA, Buckley E. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84-98. https://doi.org/10.1080/15572536.2006.11832842
  32. Liu YJ, Whelen S, Hall BD. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 16: 1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  33. Hong SB, Go SJ, Shin HD, Frisvad JC, Samson RA. 2005. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97: 1316-1329. https://doi.org/10.1080/15572536.2006.11832738
  34. Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61: 1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  35. Boonyuen N, Chuaseeharonnachai C, Suetrong S, Sri-Indrasutdhi V, Sivichai S, Jones EBG, et al. 2011. Savoryellales (Hypocreomycetidae, Sordariomycetes): a novel lineage of aquatic ascomycetes inferred from multiple-gene phylogenies of the genera Ascotaiwania, Ascothailandia, and Savoryella. Mycologia 103: 1351-1371. https://doi.org/10.3852/11-102
  36. A.Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
  37. Saini R, Saini JK, Adsul M, Patel AK, Mathur A, Tuli D, et al. 2015. Enhanced cellulase production by Penicillium oxalicum for bioethanol application. Bioresour. Technol. 188: 240-246. https://doi.org/10.1016/j.biortech.2015.01.048
  38. Maeda RN, Barcelos CA, Anna LMMS, Pereira N. 2013. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. J. Biotechnol. 163: 38-44. https://doi.org/10.1016/j.jbiotec.2012.10.014
  39. Sluiter A, Hames B, Scarlata C, Sluiter J, Templeton D, Crocker D. 2008. Determination of Structural Carbohydrates and Lignin in Biomass-NREL/TP-510-42618. Laboratory Analytical Procedure (LAP).
  40. Miller GL. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  41. Ghose TK. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268. https://doi.org/10.1351/pac198759020257
  42. Singhania RR, Adsul M, Pandey A, Patel AK. 2017. 4 - Cellulases, pp. 73-101. In Pandey A, Negi S, Soccol CR (eds.), Current Developments in Biotechnology and Bioengineering, Ed. Elsevier.
  43. Chundawat SPS, Balan V, Dale BE. 2008. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass. Biotechnol. Bioeng. 99: 1281-1294. https://doi.org/10.1002/bit.21805
  44. Walter ME, Ortiz A, Sondgeroth C, Sindt NM, Duszenko N, Catlett JL, et al. 2016. High-throughput mutation, selection, and phenotype screening of mutant methanogenic archaea. J. Microbiol. Methods 131: 113-121. https://doi.org/10.1016/j.mimet.2016.10.010
  45. Inoue H, Decker SR, Taylor LE, Yano S, Sawayama S. 2014. Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass. Biotechnol. Biofuels 7: 151. https://doi.org/10.1186/s13068-014-0151-5
  46. Tiwari P, Misra BN, Sangwan NS. 2013. Beta-glucosidases from the fungus Trichoderma: an efficient cellulase machinery in biotechnological applications. Biomed. Res. Int. 2013: 203735.
  47. de Hoog GS. 1996. Risk assessment of fungi reported from humans and animals. Mycoses 39: 407-417. https://doi.org/10.1111/j.1439-0507.1996.tb00089.x
  48. Premalatha N, Gopal NO, Jose PA, Anandham R, Kwon SW. 2015. Optimization of cellulase production by Enhydrobacter sp ACCA2 and its application in biomass saccharification. Front. Microbiol. 6: 1046. https://doi.org/10.3389/fmicb.2015.01046
  49. Manisha, Yadav SK. 2017. Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass. Bioresour. Technol. 245: 1727-1739. https://doi.org/10.1016/j.biortech.2017.05.066
  50. Yao GS, Li ZH, Gao LW, Wu RM, Kan QB, Liu GD, et al. 2015. Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum. Biotechnol. Biofuels 8: 71. https://doi.org/10.1186/s13068-015-0253-8
  51. Picart P, Diaz P, Pastor FIJ. 2007. Cellulases from two Penicillium sp strains isolated from subtropical forest soil: production and characterization. Lett. Appl. Microbiol. 45: 108-113. https://doi.org/10.1111/j.1472-765X.2007.02148.x
  52. Jing L, Zhao S, Xue JL, Zhang Z, Yang Q, Xian L, et al. 2015. Isolation and characterization of a novel Penicillium oxalicum strain Z1- 3 with enhanced cellobiohydrolase production using cellulase-hydrolyzed sugarcane bagasse as carbon source. Ind. Crop Prod. 77: 666-675. https://doi.org/10.1016/j.indcrop.2015.09.052
  53. Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A. 2013. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 127: 500-507. https://doi.org/10.1016/j.biortech.2012.09.012
  54. Hijosa-Valsero M, Garita-Cambronero J, Paniagua-Garcia AI, Diez-Antolinez R. 2018. Biobutanol production from coffee silverskin. Microb. Cell Fact. 17: 154. https://doi.org/10.1186/s12934-018-1002-z
  55. Sun Y, Cheng JY. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  56. Zhang YHP, Lynd LR. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88: 797-824. https://doi.org/10.1002/bit.20282
  57. Weerasai K, Suriyachai N, Poonsrisawat A, Arnthong J, Unrean P, Laosiripojana N, et al. 2014. Sequential acid and alkaline pretreatment of rice straw for bioethanol fermentation. Bioresources 9: 5988-6001.
  58. Li P, Cai D, Zhang CW, Li SF, Qin PY, Chen CJ, et al. 2016. Comparison of two-stage acid-alkali and alkali-acid pretreatments on enzymatic saccharification ability of the sweet sorghum fiber and their physicochemical characterizations. Bioresour. Technol. 221: 636-644. https://doi.org/10.1016/j.biortech.2016.09.075
  59. Visser EM, Falkoski DL, de Almeida MN, Maitan-Alfenas GP, Guimaraes VM. 2013. Production and application of an enzyme blend from Chrysoporthe cubensis and Penicillium pinophilum with potential for hydrolysis of sugarcane bagasse. Bioresour. Technol. 144: 587-594. https://doi.org/10.1016/j.biortech.2013.07.015
  60. Pan XJ. 2008. Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J. Biobased. Mater. Bioenergy 2: 25-32. https://doi.org/10.1166/jbmb.2008.005

Cited by

  1. Biological approach in deinking of waste paper using bacterial cellulase as an effective enzyme catalyst vol.287, pp.p2, 2020, https://doi.org/10.1016/j.chemosphere.2021.132088
  2. Production of D-galacturonic acid from pomelo peel using the crude enzyme from recombinant Trichoderma reesei expressing a heterologous exopolygalacturonase gene vol.331, 2020, https://doi.org/10.1016/j.jclepro.2021.129958