References
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-402. https://doi.org/10.1093/nar/25.17.3389
- Araki C. 1959. Seaweed polysaccharides, pp. 15-30. In: Wolfrom ML (ed.), Carbohydrate chemistry of substances of biological interests, Pergamon Press, London.
- Asghar S, Lee CR, Chi WJ, Kang DK, Hong SK. 2019. Molecular cloning and characterization of a novel cold-adapted alkaline 1,3-α3,6-anhydro-l-galactosidase, Ahg558, from Gayadomonas joobiniege G7. Appl. Biochem. Biotechnol. 188: 1077-1095. https://doi.org/10.1007/s12010-019-02963-w
- Asghar S, Lee CR, Park JS, Chi WJ, Kang DK, Hong SK. 2018. Identification and biochemical characterization of a novel coldadapted 1,3-a-3,6-anhydro-L-galactosidase, Ahg786, from Gayadomonas joobiniege G7. Appl. Microbiol. Biotechnol. 102: 8855-8866. https://doi.org/10.1007/s00253-018-9277-x
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1006/abio.1976.9999
- Chi WJ, Chang YK, Hong SK. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930 https://doi.org/10.1007/s00253-012-4023-2
- Chi WJ, Park JS, Kwak MJ, Kim JF, Chang YK, Hong SK. 2013. Isolation and characterization of a novel agar-degrading marine bacterium, Gayadomonas joobiniege gen, nov, sp. nov., from the southern sea, Korea. J. Microbiol. Biotechnol. 23: 1509-1518. https://doi.org/10.4014/jmb.1308.08007
- Choi U, Jung S, Hong SK, Lee CR. 2019. Characterization of a novel neoagarobiose-producing GH42 β-agarase, AgaJ10, from Gayadomonas joobiniege G7. Appl. Biochem. Biotechnol. 189: 1-12. https://doi.org/10.1007/s12010-019-02992-5
- Elkahlout K, Alipour S, Eroglu I, Gunduz U, Yucel M. 2017. Long-term biological hydrogen production by agar immobilized Rhodobacter capsulatus in a sequential batch photobioreactor. Bioprocess Biosyst. Eng. 40: 589-599. https://doi.org/10.1007/s00449-016-1723-5
- Ficko-Blean E, Duffieux D, Rebuffet E, Larocque R, Groisillier A, Michel G, et al. 2015. Biochemical and structural investigation of two paralogous glycoside hydrolases from Zobellia galactanivorans: novel insights into the evolution, dimerization plasticity and catalytic mechanism of the GH117 family. Acta. Crystallogr. D Biol. Crystallogr. 71: 209-223. https://doi.org/10.1107/S1399004714025024
- Guerrero C, Vera C, Serna N, Illanes A. 2017. Immobilization of Aspergillus oryzae b-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose. Bioresour. Technol. 232: 53-63. https://doi.org/10.1016/j.biortech.2017.02.003
- Ha SC, Lee S, Lee J, Kim HT, Ko HJ, Kim KH, et al. 2011. Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2-40. Biochem. Biophys. Res. Commun. 412: 238-244. https://doi.org/10.1016/j.bbrc.2011.07.073
- Han Z, Zhang Y, Yang J. 2019. Biochemical characterization of a new β-agarase from Cellulophaga algicola. Int. J. Mol. Sci. 20: 2143. doi:10.3390/ijms20092143.
- Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464: 908-912. https://doi.org/10.1038/nature08937
- Hehemann JH, Smyth L, Yadav A, Vocadlo DJ, Boraston AB. 2012. Analysis of keystone enzyme in Agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds. J. Biol. Chem. 287: 13985-13995. https://doi.org/10.1074/jbc.M112.345645
- Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J. 2016. Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties. Int. J. Biol. Macromol. 89: 575-581. https://doi.org/10.1016/j.ijbiomac.2016.05.028
- Jung S, Jeong BC, Hong SK, Lee CR. 2017a. Cloning, Expression, and Biochemical Characterization of a Novel Acidic GH16 βAgarase, AgaJ11, from Gayadomonas joobiniege G7. Appl. Biochem. Biotechnol. 181: 961-971. https://doi.org/10.1007/s12010-016-2262-x
- Jung S, Lee CR, Chi WJ, Bae CH, Hong SK. 2017b. Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7. Appl. Microbiol. Biotechnol. 101: 1965-1974. https://doi.org/10.1007/s00253-016-7951-4
- Kazimierczak P, Palka K, Przekora A. 2019. Development and optimization of the novel fabrication method of highly macroporous chitosan/agarose/nanohydroxyapatite bone scaffold for potential regenerative medicine applications. Biomolecules 9: 434. https://doi.org/10.3390/biom9090434
- Kim HT, Lee S, Kim KH, Choi IG. 2012. The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresour. Technol. 107: 301-306. https://doi.org/10.1016/j.biortech.2011.11.120
- Kim HT, Yun EJ, Wang D, Chung JH, Choi IG, Kim KH. 2013. High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass. Bioresour. Technol. 136: 582-587. https://doi.org/10.1016/j.biortech.2013.03.038
- Klausen MS, Jespersen MC, Nielsen H, Jensen KK, Jurtz VI, Sonderby CK, et al. 2019. NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. Proteins 87: 520-527. https://doi.org/10.1002/prot.25674
- Knutsen SH, Myslabodski DE, Larsen B, Usov AI. 1994. A modified system of nomenclature for red algal galactans. Botanica Marina 37: 163-169. https://doi.org/10.1515/botm.1994.37.2.163
- Kwak MJ, Song JY, Kim BK, Chi WJ, Kwon SK, Choi S, Chang YK, Hong SK, Kim JF. 2012. Genome sequence of the agar degrading marine bacterium Alteromonadaceae sp. strain G7. J. Bacteriol. 194: 6961-6962. https://doi.org/10.1128/JB.01931-12
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Lam PL, Gambari R, Kok SH, Lam KH, Tang JC, Bian ZX, et al. 2015. Non-toxic agarose/gelatin-based microencapsulation system containing gallic acid for antifungal application. Int. J. Mol. Med. 35: 503-510. https://doi.org/10.3892/ijmm.2014.2027
- Lee YR, Jung S, Chi WJ, Bae CH, Jeong BC, Hong SK, et al. 2018. Biochemical Characterization of a Novel GH86 β-Agarase Producing Neoagarohexaose from Gayadomonas joobiniege G7. J. Microbiol. Biotechnol. 28: 284-292. https://doi.org/10.4014/jmb.1710.10011
- Lineweaver H, Burk D. 1934. The determination of enzyme dissociation constants. J. Amer. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
- Liu J, Xue Z, Zhang W, Yan M, Xia Y. 2018. Preparation and properties of wet-spun agar fibers. Carbohydr. Polym. 181: 760-767. https://doi.org/10.1016/j.carbpol.2017.11.081
- Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Nurizzo D, Turkenburg JP, Charnock SJ, Roberts SM, Dodson EJ, McKie VA, et al. 2002. Cellvibrio japonicus alpha-L-arabinanase 43A has a novel five-blade beta-propeller fold. Nat. Struct. Biol. 9: 665-668. https://doi.org/10.1038/nsb835
- Pandit P, Nadathur GT, Maiti S, Regubalan B. 2018. Functionality and properties of bio-based materials. In Ahmed S. (eds.), Bio-based Materials for Food Packaging, Springer, Singapore.
- Park SH, Lee CR, Hong SK. 2020. Implications of agar and agarase in industrial applications of sustainable marine biomass. Appl. Microbiol. Biotechnol. 104: 2815-2832. https://doi.org/10.1007/s00253-020-10412-6
- Pons T, Naumoff DG, Martinez-Fleites C, Hernandez L. 2004. Three acidic residues are at the active site of a beta-propeller architecture in glycoside hydrolase families 32, 43, 62, and 68. Proteins 54: 424-432. https://doi.org/10.1002/prot.10604
- Ranalli G, Zanardini E, Rampazzi L, Corti C, Andreotti A, Colombini MP, et al. 2019. Onsite advanced biocleaning system for historical wall paintings using new agar-gauze bacteria gel. J. Appl. Microbiol. 126: 1785-1796. https://doi.org/10.1111/jam.14275
- Rebuffet E, Groisillier A, Thompson A, Jeudy A, Barbeyron T, Czjzek M, et al. 2011. Discovery and structural characterization of a novel glycosidase family of marine origin. Environ. Microbiol. 13: 1253-1270. https://doi.org/10.1111/j.1462-2920.2011.02426.x
- Saitou N and Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
- Yun EJ, Yu S, Kim KH. 2017. Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars. Appl. Microbiol. Biotechnol. 101: 5581-5589. https://doi.org/10.1007/s00253-017-8383-5
- Zuckerkandl E, Pauling L. 1965. Evolutionary divergence and convergence in proteins. pp. 97-166, In Bryson V, Vogel HJ (eds.), Evolving Genes and Proteins, Academic Press, New York