DOI QR코드

DOI QR Code

Zika Virus-Encoded NS2A and NS4A Strongly Downregulate NF-κB Promoter Activity

  • Lee, Jeong Yoon (Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University) ;
  • Nguyen, Thi Thuy Ngan (Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University) ;
  • Myoung, Jinjong (Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University)
  • Received : 2020.11.05
  • Accepted : 2020.11.16
  • Published : 2020.11.28

Abstract

Since Zika virus (ZIKV) was first detected in Uganda in 1947, serious outbreaks have occurred globally in Yap Island, French Polynesia and Brazil. Even though the number of infections and spread of ZIKV have risen sharply, the pathogenesis and replication mechanisms of ZIKV have not been well studied. ZIKV, a recently highlighted Flavivirus, is a mosquito-borne emerging virus causing microcephaly and the Guillain-Barre syndrome in fetuses and adults, respectively. ZIKV polyprotein consists of three structural proteins named C, prM and E and seven nonstructural proteins named NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 in an 11-kb single-stranded positive sense RNA genome. The function of individual ZIKV genes on the host innate immune response has barely been studied. In this study, we investigated the modulations of the NF-κB promoter activity induced by the MDA5/RIG-I signaling pathway. According to our results, two nonstructural proteins, NS2A and NS4A, dramatically suppressed the NF-κB promoter activity by inhibiting signaling factors involved in the MDA5/RIG-I signaling pathway. Interestingly, NS2A suppressed all components of MDA5/RIG-I signaling pathway, but NS4A inhibited most signaling molecules, except IKKε and IRF3-5D. In addition, both NS2A and NS4A downregulated MDA5-induced NF-κB promoter activity in a dosedependent manner. Taken together, our results suggest that NS2A and NS4A signifcantly antagonize MDA5/RIG-I-mediated NF-κB production, and these proteins seem to be controlled by different mechanisms. This study could help understand the mechanisms of how ZIKV controls innate immune responses and may also assist in the development of ZIKV-specific therapeutics.

Keywords

References

  1. Malone RW, Homan J, Callahan MV, Glasspool-Malone J, Damodaran L, Schneider Ade B, et al. 2016. Zika Virus: Medical countermeasure development challenges. PLoS Negl. Trop. Dis. 10: e0004530. https://doi.org/10.1371/journal.pntd.0004530
  2. Dick GW, Kitchen SF, Haddow AJ. 1952. Zika virus. I. Isolations and serological specificity. Trans. R Soc. Trop. Med. Hyg. 46: 509-520. https://doi.org/10.1016/0035-9203(52)90042-4
  3. Cao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, et al. 2016. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387: 1531-1539. https://doi.org/10.1016/s0140-6736(16)00562-6
  4. Chang C, Ortiz K, Ansari A, Gershwin ME. 2016. The Zika outbreak of the 21st century. J. Autoimmun. 68: 1-13. https://doi.org/10.1016/j.jaut.2016.02.006
  5. Nicastri E, Castilletti C, Liuzzi G, Iannetta M, Capobianchi MR, Ippolito G. 2016. Persistent detection of Zika virus RNA in semen for six months after symptom onset in a traveller returning from Haiti to Italy, February 2016. Euro. Surveill. 21: 30314.
  6. Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, Studholme C, Boldenow E, Vornhagen J, et al. 2016. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat. Med. 22: 1256-1259. https://doi.org/10.1038/nm.4193
  7. Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, et al. 2016. A Mouse model of zika virus pathogenesis. Cell Host Microbe 19: 720-730. https://doi.org/10.1016/j.chom.2016.03.010
  8. van den Pol AN, Mao G, Yang Y, Ornaghi S, Davis JN. 2017. Zika virus targeting in the developing brain. J. Neurosci. 37: 2161-2175. https://doi.org/10.1523/JNEUROSCI.3124-16.2017
  9. Wise J. 2016. Study links Zika virus to Guillain-Barre syndrome. BMJ 352: i1242. https://doi.org/10.1136/bmj.i1242
  10. Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C, et al. 2016. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc. Natl. Acad. Sci. USA 113: 14408-14413. https://doi.org/10.1073/pnas.1618029113
  11. Gilmore TD. 2006. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25: 6680-6684. https://doi.org/10.1038/sj.onc.1209954
  12. Brasier AR. 2006. The NF-kappaB regulatory network. Cardiovasc. Toxicol. 6: 111-130. https://doi.org/10.1385/CT:6:2:111
  13. Perkins ND. 2007. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell Biol. 8: 49-62. https://doi.org/10.1038/nrm2083
  14. Tian B, Brasier AR. 2003. Identification of a nuclear factor kappa B-dependent gene network. Recent Prog. Horm. Res. 58: 95-130. https://doi.org/10.1210/rp.58.1.95
  15. Tak PP, Firestein GS. 2001. NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest. 107: 7-11. https://doi.org/10.1172/JCI11830
  16. Janeway CA, Jr., Medzhitov R. 2002. Innate immune recognition. Annu. Rev. Immunol. 20: 197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  17. Meylan E, Tschopp J, Karin M. 2006. Intracellular pattern recognition receptors in the host response. Nature 442: 39-44. https://doi.org/10.1038/nature04946
  18. Lee JY, Bae S, Myoung J. 2019. Middle East Respiratory Syndrome Coronavirus-encoded accessory proteins impair MDA5-and TBK1-mediated activation of NF-kappaB. J. Microbiol. Biotechnol. 29: 1316-1323. https://doi.org/10.4014/jmb.1908.08004
  19. Lee JY, Kim SJ, Myoung J. 2019. Middle East Respiratory Syndrome Coronavirus-encoded ORF8b inhibits RIG-I-Like receptors in a differential mechanism. J. Microbiol. Biotechnol. 29: 2014-2021. https://doi.org/10.4014/jmb.1911.11024
  20. Myoung J, Lee JY, Min KS. 2019. Methyltransferase of a cell culture-adapted hepatitis E inhibits the MDA5 receptor signaling pathway. J. Microbiol. 57: 1126-1131. https://doi.org/10.1007/s12275-019-9478-8
  21. Myoung J, Lee SA, Lee HR. 2019. Beyond viral interferon regulatory factors: immune evasion strategies. J. Microbiol. Biotechnol. 29: 1873-1881. https://doi.org/10.4014/jmb.1910.10004
  22. Myoung J, Min K. 2019. Dose-dependent inhibition of melanoma differentiation-associated gene 5-mediated activation of type I interferon responses by methyltransferase of hepatitis E virus. J. Microbiol. Biotechnol. 29: 1137-1143. https://doi.org/10.4014/jmb.1905.05040
  23. Cui Y, Li M, Walton KD, Sun K, Hanover JA, Furth PA, et al. 2001. The Stat3/5 locus encodes novel endoplasmic reticulum and helicase-like proteins that are preferentially expressed in normal and neoplastic mammary tissue. Genomics 78: 129-134. https://doi.org/10.1006/geno.2001.6661
  24. Miyoshi K, Cui Y, Riedlinger G, Robinson P, Lehoczky J, Zon L, et al. 2001. Structure of the mouse Stat 3/5 locus: evolution from Drosophila to zebrafish to mouse. Genomics 71: 150-155. https://doi.org/10.1006/geno.2000.6433
  25. Kang S, Myoung J. 2017. Host innate immunity against Hepatitis E virus and viral evasion mechanisms. J. Microbiol. Biotechnol. 27: 1727-1735. https://doi.org/10.4014/jmb.1708.08045
  26. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101-105. https://doi.org/10.1038/nature04734
  27. Bae S, Lee JY, Myoung J. 2019. Chikungunya virus-encoded nsP2, E2 and E1 strongly antagonize the interferon-beta signaling pathway. J. Microbiol. Biotechnol. 29: 1852-1859. https://doi.org/10.4014/jmb.1910.10014
  28. Lee J, Bae S, Myoung J. 2019. Generation of full-length infectious cDNA clones of middle east respiratory syndrome Coronavirus. J. Microbiol. Biotechnol. 29: 999-1007. https://doi.org/10.4014/jmb.1905.05061
  29. Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-beta promoter activation: its implication for vaccine design. J. Microbiol. 57: 803-811. https://doi.org/10.1007/s12275-019-9272-7
  30. Ngueyen TTN, Kim SJ, Lee JY, Myoung J. 2019. Zika virus proteins NS2A and NS4A Are major antagonists that reduce IFN-beta promoter activity induced by the MDA5/RIG-I signaling pathway. J. Microbiol. Biotechnol. 29: 1665-1674. https://doi.org/10.4014/jmb.1909.09017
  31. Hiscott J, Grandvaux N, Sharma S, Tenoever BR, Servant MJ, Lin R. 2003. Convergence of the NF-kappaB and interferon signaling pathways in the regulation of antiviral defense and apoptosis. Ann. NY Acad. Sci. 1010: 237-248. https://doi.org/10.1196/annals.1299.042
  32. Li W, Li N, Dai S, Hou G, Guo K, Chen X, et al. 2019. Zika virus circumvents host innate immunity by targeting the adaptor proteins MAVS and MITA. FASEB J. 33: 9929-9944. https://doi.org/10.1096/fj.201900260r
  33. Park BJ, Jung ST, Choi CS, Myoung J, Ahn HS, Han SH, et al. 2018. Pathogenesis of human norovirus genogroup II genotype 4 in post-weaning gnotobiotic pigs. J. Microbiol. Biotechnol. 28: 2133-2140. https://doi.org/10.4014/jmb.1809.09061
  34. Kim E, Myoung J. 2018. Hepatitis E virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5. J. Microbiol. Biotechnol. 28: 1908-1915. https://doi.org/10.4014/jmb.1809.09028
  35. Kang S, Choi C, Choi I, Han KN, Rho SW, Choi J, et al. 2018. Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562. https://doi.org/10.4014/jmb.1808.08058
  36. Sun G, Larsen CN, Baumgarth N, Klem EB, Scheuermann RH. 2017. Comprehensive annotation of mature peptides and genotypes for zika virus. PLoS One 12: e0170462. https://doi.org/10.1371/journal.pone.0170462
  37. Mukhopadhyay S, Kuhn RJ, Rossmann MG. 2005. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3: 13-22. https://doi.org/10.1038/nrmicro1067
  38. Akey DL, Brown WC, Dutta S, Konwerski J, Jose J, Jurkiw TJ, et al. 2014. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 343: 881-885. https://doi.org/10.1126/science.1247749
  39. Wu Y, Liu Q, Zhou J, Xie W, Chen C, Wang Z, et al. 2017. Zika virus evades interferon-mediated antiviral response through the cooperation of multiple nonstructural proteins in vitro. Cell Discov. 3: 17006.
  40. Xia H, Luo H, Shan C, Muruato AE, Nunes BTD, Medeiros DBA, et al. 2018. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat. Commun. 9: 414. https://doi.org/10.1038/s41467-017-02816-2
  41. Leung JY, Pijlman GP, Kondratieva N, Hyde J, Mackenzie JM, Khromykh AA. 2008. Role of nonstructural protein NS2A in flavivirus assembly. J. Virol. 82: 4731-4741. https://doi.org/10.1128/JVI.00002-08
  42. Liu WJ, Chen HB, Khromykh AA. 2003. Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for a nonconservative residue in NS3 in RNA replication. J. Virol. 77: 7804-7813. https://doi.org/10.1128/JVI.77.14.7804-7813.2003
  43. Marquez-Jurado S, Nogales A, Avila-Perez G, Iborra FJ, Martinez-Sobrido L, Almazan F. 2018. An alanine-to-valine substitution in the residue 175 of Zika virus NS2A protein affects viral RNA synthesis and attenuates the virus in vivo. Viruses 10: 547. https://doi.org/10.3390/v10100547
  44. Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A. 2003. Inhibition of interferon signaling by dengue virus. Proc. Natl. Acad. Sci. USA 100: 14333-14338. https://doi.org/10.1073/pnas.2335168100
  45. Tu YC, Yu CY, Liang JJ, Lin E, Liao CL, Lin YL. 2012. Blocking double-stranded RNA-activated protein kinase PKR by Japanese encephalitis virus nonstructural protein 2A. J. Virol. 86: 10347-10358. https://doi.org/10.1128/JVI.00525-12
  46. Xie X, Zou J, Puttikhunt C, Yuan Z, Shi PY. 2015. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. J. Virol. 89: 1298-1313. https://doi.org/10.1128/jvi.02882-14
  47. Zhang X, Xie X, Zou J, Xia H, Shan C, Chen X, et al. 2019. Genetic and biochemical characterizations of Zika virus NS2A protein. Emerg. Microbes Infect. 8: 585-602. https://doi.org/10.1080/22221751.2019.1598291
  48. Wang CC, Huang ZS, Chiang PL, Chen CT, Wu HN. 2009. Analysis of the nucleoside triphosphatase, RNA triphosphatase, and unwinding activities of the helicase domain of dengue virus NS3 protein. FEBS Lett. 583: 691-696. https://doi.org/10.1016/j.febslet.2009.01.008
  49. Miller S, Kastner S, Krijnse-Locker J, Buhler S, Bartenschlager R. 2007. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J. Biol. Chem. 282: 8873-8882. https://doi.org/10.1074/jbc.M609919200
  50. Ambrose RL, Mackenzie JM. 2011. A conserved peptide in West Nile virus NS4A protein contributes to proteolytic processing and is essential for replication. J. Virol. 85: 11274-11282. https://doi.org/10.1128/JVI.05864-11
  51. Ma J, Ketkar H, Geng T, Lo E, Wang L, Xi J, et al. 2018. Zika virus non-structural protein 4A Blocks the RLR-MAVS Signaling. Front. Microbiol. 9: 1350. https://doi.org/10.3389/fmicb.2018.01350
  52. Li XD, Ye HQ, Deng CL, Liu SQ, Zhang HL, Shang BD, et al. 2015. Genetic interaction between NS4A and NS4B for replication of Japanese encephalitis virus. J. Gen. Virol. 96: 1264-1275. https://doi.org/10.1099/vir.0.000044
  53. Liang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, et al. 2016. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19: 663-671. https://doi.org/10.1016/j.stem.2016.07.019
  54. Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B. 2002. An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J. 21: 2757-2768. https://doi.org/10.1093/emboj/21.11.2757
  55. Issur M, Geiss BJ, Bougie I, Picard-Jean F, Despins S, Mayette J, et al. 2009. The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA 15: 2340-2350. https://doi.org/10.1261/rna.1609709
  56. Dong H, Fink K, Zust R, Lim SP, Qin CF, Shi PY. 2014. Flavivirus RNA methylation. J. Gen. Virol. 95: 763-778. https://doi.org/10.1099/vir.0.062208-0
  57. Lee MS, Kim YJ. 2007. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem. 76: 447-480. https://doi.org/10.1146/annurev.biochem.76.060605.122847
  58. Reikine S, Nguyen JB, Modis Y. 2014. Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5. Front. Immunol. 5: 342.
  59. Ye J, Chen Z, Li Y, Zhao Z, He W, Zohaib A, et al. 2017. Japanese encephalitis virus NS5 inhibits type I interferon (IFN) production by blocking the nuclear translocation of IFN regulatory factor 3 and NF-kappaB. J. Virol. 91: e00039-17.
  60. Khunchai S, Junking M, Suttitheptumrong A, Kooptiwut S, Haegeman G, Limjindaporn T, et al. 2015. NF-kappaB is required for dengue virus NS5-induced RANTES expression. Virus Res. 197: 92-100. https://doi.org/10.1016/j.virusres.2014.12.007