References
- Malone RW, Homan J, Callahan MV, Glasspool-Malone J, Damodaran L, Schneider Ade B, et al. 2016. Zika Virus: Medical countermeasure development challenges. PLoS Negl. Trop. Dis. 10: e0004530. https://doi.org/10.1371/journal.pntd.0004530
- Dick GW, Kitchen SF, Haddow AJ. 1952. Zika virus. I. Isolations and serological specificity. Trans. R Soc. Trop. Med. Hyg. 46: 509-520. https://doi.org/10.1016/0035-9203(52)90042-4
- Cao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, et al. 2016. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387: 1531-1539. https://doi.org/10.1016/s0140-6736(16)00562-6
- Chang C, Ortiz K, Ansari A, Gershwin ME. 2016. The Zika outbreak of the 21st century. J. Autoimmun. 68: 1-13. https://doi.org/10.1016/j.jaut.2016.02.006
- Nicastri E, Castilletti C, Liuzzi G, Iannetta M, Capobianchi MR, Ippolito G. 2016. Persistent detection of Zika virus RNA in semen for six months after symptom onset in a traveller returning from Haiti to Italy, February 2016. Euro. Surveill. 21: 30314.
- Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, Studholme C, Boldenow E, Vornhagen J, et al. 2016. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat. Med. 22: 1256-1259. https://doi.org/10.1038/nm.4193
- Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, et al. 2016. A Mouse model of zika virus pathogenesis. Cell Host Microbe 19: 720-730. https://doi.org/10.1016/j.chom.2016.03.010
- van den Pol AN, Mao G, Yang Y, Ornaghi S, Davis JN. 2017. Zika virus targeting in the developing brain. J. Neurosci. 37: 2161-2175. https://doi.org/10.1523/JNEUROSCI.3124-16.2017
- Wise J. 2016. Study links Zika virus to Guillain-Barre syndrome. BMJ 352: i1242. https://doi.org/10.1136/bmj.i1242
- Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C, et al. 2016. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc. Natl. Acad. Sci. USA 113: 14408-14413. https://doi.org/10.1073/pnas.1618029113
- Gilmore TD. 2006. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25: 6680-6684. https://doi.org/10.1038/sj.onc.1209954
- Brasier AR. 2006. The NF-kappaB regulatory network. Cardiovasc. Toxicol. 6: 111-130. https://doi.org/10.1385/CT:6:2:111
- Perkins ND. 2007. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell Biol. 8: 49-62. https://doi.org/10.1038/nrm2083
- Tian B, Brasier AR. 2003. Identification of a nuclear factor kappa B-dependent gene network. Recent Prog. Horm. Res. 58: 95-130. https://doi.org/10.1210/rp.58.1.95
- Tak PP, Firestein GS. 2001. NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest. 107: 7-11. https://doi.org/10.1172/JCI11830
- Janeway CA, Jr., Medzhitov R. 2002. Innate immune recognition. Annu. Rev. Immunol. 20: 197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
- Meylan E, Tschopp J, Karin M. 2006. Intracellular pattern recognition receptors in the host response. Nature 442: 39-44. https://doi.org/10.1038/nature04946
- Lee JY, Bae S, Myoung J. 2019. Middle East Respiratory Syndrome Coronavirus-encoded accessory proteins impair MDA5-and TBK1-mediated activation of NF-kappaB. J. Microbiol. Biotechnol. 29: 1316-1323. https://doi.org/10.4014/jmb.1908.08004
- Lee JY, Kim SJ, Myoung J. 2019. Middle East Respiratory Syndrome Coronavirus-encoded ORF8b inhibits RIG-I-Like receptors in a differential mechanism. J. Microbiol. Biotechnol. 29: 2014-2021. https://doi.org/10.4014/jmb.1911.11024
- Myoung J, Lee JY, Min KS. 2019. Methyltransferase of a cell culture-adapted hepatitis E inhibits the MDA5 receptor signaling pathway. J. Microbiol. 57: 1126-1131. https://doi.org/10.1007/s12275-019-9478-8
- Myoung J, Lee SA, Lee HR. 2019. Beyond viral interferon regulatory factors: immune evasion strategies. J. Microbiol. Biotechnol. 29: 1873-1881. https://doi.org/10.4014/jmb.1910.10004
- Myoung J, Min K. 2019. Dose-dependent inhibition of melanoma differentiation-associated gene 5-mediated activation of type I interferon responses by methyltransferase of hepatitis E virus. J. Microbiol. Biotechnol. 29: 1137-1143. https://doi.org/10.4014/jmb.1905.05040
- Cui Y, Li M, Walton KD, Sun K, Hanover JA, Furth PA, et al. 2001. The Stat3/5 locus encodes novel endoplasmic reticulum and helicase-like proteins that are preferentially expressed in normal and neoplastic mammary tissue. Genomics 78: 129-134. https://doi.org/10.1006/geno.2001.6661
- Miyoshi K, Cui Y, Riedlinger G, Robinson P, Lehoczky J, Zon L, et al. 2001. Structure of the mouse Stat 3/5 locus: evolution from Drosophila to zebrafish to mouse. Genomics 71: 150-155. https://doi.org/10.1006/geno.2000.6433
- Kang S, Myoung J. 2017. Host innate immunity against Hepatitis E virus and viral evasion mechanisms. J. Microbiol. Biotechnol. 27: 1727-1735. https://doi.org/10.4014/jmb.1708.08045
- Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101-105. https://doi.org/10.1038/nature04734
- Bae S, Lee JY, Myoung J. 2019. Chikungunya virus-encoded nsP2, E2 and E1 strongly antagonize the interferon-beta signaling pathway. J. Microbiol. Biotechnol. 29: 1852-1859. https://doi.org/10.4014/jmb.1910.10014
- Lee J, Bae S, Myoung J. 2019. Generation of full-length infectious cDNA clones of middle east respiratory syndrome Coronavirus. J. Microbiol. Biotechnol. 29: 999-1007. https://doi.org/10.4014/jmb.1905.05061
- Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-beta promoter activation: its implication for vaccine design. J. Microbiol. 57: 803-811. https://doi.org/10.1007/s12275-019-9272-7
- Ngueyen TTN, Kim SJ, Lee JY, Myoung J. 2019. Zika virus proteins NS2A and NS4A Are major antagonists that reduce IFN-beta promoter activity induced by the MDA5/RIG-I signaling pathway. J. Microbiol. Biotechnol. 29: 1665-1674. https://doi.org/10.4014/jmb.1909.09017
- Hiscott J, Grandvaux N, Sharma S, Tenoever BR, Servant MJ, Lin R. 2003. Convergence of the NF-kappaB and interferon signaling pathways in the regulation of antiviral defense and apoptosis. Ann. NY Acad. Sci. 1010: 237-248. https://doi.org/10.1196/annals.1299.042
- Li W, Li N, Dai S, Hou G, Guo K, Chen X, et al. 2019. Zika virus circumvents host innate immunity by targeting the adaptor proteins MAVS and MITA. FASEB J. 33: 9929-9944. https://doi.org/10.1096/fj.201900260r
- Park BJ, Jung ST, Choi CS, Myoung J, Ahn HS, Han SH, et al. 2018. Pathogenesis of human norovirus genogroup II genotype 4 in post-weaning gnotobiotic pigs. J. Microbiol. Biotechnol. 28: 2133-2140. https://doi.org/10.4014/jmb.1809.09061
- Kim E, Myoung J. 2018. Hepatitis E virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5. J. Microbiol. Biotechnol. 28: 1908-1915. https://doi.org/10.4014/jmb.1809.09028
- Kang S, Choi C, Choi I, Han KN, Rho SW, Choi J, et al. 2018. Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562. https://doi.org/10.4014/jmb.1808.08058
- Sun G, Larsen CN, Baumgarth N, Klem EB, Scheuermann RH. 2017. Comprehensive annotation of mature peptides and genotypes for zika virus. PLoS One 12: e0170462. https://doi.org/10.1371/journal.pone.0170462
- Mukhopadhyay S, Kuhn RJ, Rossmann MG. 2005. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3: 13-22. https://doi.org/10.1038/nrmicro1067
- Akey DL, Brown WC, Dutta S, Konwerski J, Jose J, Jurkiw TJ, et al. 2014. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 343: 881-885. https://doi.org/10.1126/science.1247749
- Wu Y, Liu Q, Zhou J, Xie W, Chen C, Wang Z, et al. 2017. Zika virus evades interferon-mediated antiviral response through the cooperation of multiple nonstructural proteins in vitro. Cell Discov. 3: 17006.
- Xia H, Luo H, Shan C, Muruato AE, Nunes BTD, Medeiros DBA, et al. 2018. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat. Commun. 9: 414. https://doi.org/10.1038/s41467-017-02816-2
- Leung JY, Pijlman GP, Kondratieva N, Hyde J, Mackenzie JM, Khromykh AA. 2008. Role of nonstructural protein NS2A in flavivirus assembly. J. Virol. 82: 4731-4741. https://doi.org/10.1128/JVI.00002-08
- Liu WJ, Chen HB, Khromykh AA. 2003. Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for a nonconservative residue in NS3 in RNA replication. J. Virol. 77: 7804-7813. https://doi.org/10.1128/JVI.77.14.7804-7813.2003
- Marquez-Jurado S, Nogales A, Avila-Perez G, Iborra FJ, Martinez-Sobrido L, Almazan F. 2018. An alanine-to-valine substitution in the residue 175 of Zika virus NS2A protein affects viral RNA synthesis and attenuates the virus in vivo. Viruses 10: 547. https://doi.org/10.3390/v10100547
- Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A. 2003. Inhibition of interferon signaling by dengue virus. Proc. Natl. Acad. Sci. USA 100: 14333-14338. https://doi.org/10.1073/pnas.2335168100
- Tu YC, Yu CY, Liang JJ, Lin E, Liao CL, Lin YL. 2012. Blocking double-stranded RNA-activated protein kinase PKR by Japanese encephalitis virus nonstructural protein 2A. J. Virol. 86: 10347-10358. https://doi.org/10.1128/JVI.00525-12
- Xie X, Zou J, Puttikhunt C, Yuan Z, Shi PY. 2015. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. J. Virol. 89: 1298-1313. https://doi.org/10.1128/jvi.02882-14
- Zhang X, Xie X, Zou J, Xia H, Shan C, Chen X, et al. 2019. Genetic and biochemical characterizations of Zika virus NS2A protein. Emerg. Microbes Infect. 8: 585-602. https://doi.org/10.1080/22221751.2019.1598291
- Wang CC, Huang ZS, Chiang PL, Chen CT, Wu HN. 2009. Analysis of the nucleoside triphosphatase, RNA triphosphatase, and unwinding activities of the helicase domain of dengue virus NS3 protein. FEBS Lett. 583: 691-696. https://doi.org/10.1016/j.febslet.2009.01.008
- Miller S, Kastner S, Krijnse-Locker J, Buhler S, Bartenschlager R. 2007. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J. Biol. Chem. 282: 8873-8882. https://doi.org/10.1074/jbc.M609919200
- Ambrose RL, Mackenzie JM. 2011. A conserved peptide in West Nile virus NS4A protein contributes to proteolytic processing and is essential for replication. J. Virol. 85: 11274-11282. https://doi.org/10.1128/JVI.05864-11
- Ma J, Ketkar H, Geng T, Lo E, Wang L, Xi J, et al. 2018. Zika virus non-structural protein 4A Blocks the RLR-MAVS Signaling. Front. Microbiol. 9: 1350. https://doi.org/10.3389/fmicb.2018.01350
- Li XD, Ye HQ, Deng CL, Liu SQ, Zhang HL, Shang BD, et al. 2015. Genetic interaction between NS4A and NS4B for replication of Japanese encephalitis virus. J. Gen. Virol. 96: 1264-1275. https://doi.org/10.1099/vir.0.000044
- Liang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, et al. 2016. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19: 663-671. https://doi.org/10.1016/j.stem.2016.07.019
- Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B. 2002. An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J. 21: 2757-2768. https://doi.org/10.1093/emboj/21.11.2757
- Issur M, Geiss BJ, Bougie I, Picard-Jean F, Despins S, Mayette J, et al. 2009. The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA 15: 2340-2350. https://doi.org/10.1261/rna.1609709
- Dong H, Fink K, Zust R, Lim SP, Qin CF, Shi PY. 2014. Flavivirus RNA methylation. J. Gen. Virol. 95: 763-778. https://doi.org/10.1099/vir.0.062208-0
- Lee MS, Kim YJ. 2007. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem. 76: 447-480. https://doi.org/10.1146/annurev.biochem.76.060605.122847
- Reikine S, Nguyen JB, Modis Y. 2014. Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5. Front. Immunol. 5: 342.
- Ye J, Chen Z, Li Y, Zhao Z, He W, Zohaib A, et al. 2017. Japanese encephalitis virus NS5 inhibits type I interferon (IFN) production by blocking the nuclear translocation of IFN regulatory factor 3 and NF-kappaB. J. Virol. 91: e00039-17.
- Khunchai S, Junking M, Suttitheptumrong A, Kooptiwut S, Haegeman G, Limjindaporn T, et al. 2015. NF-kappaB is required for dengue virus NS5-induced RANTES expression. Virus Res. 197: 92-100. https://doi.org/10.1016/j.virusres.2014.12.007