DOI QR코드

DOI QR Code

QTL Analysis to Improve and Diversify the Grain Shape of Rice Cultivars in Korea, Using the Long Grain japonica Cultivar, Langi

초장립종 벼를 이용한 입형 관련 QTL 분석 및 국내 벼 품종 입형 개선 연구

  • Kim, Suk-Man (Crop breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Park, Hyun-Su (Crop breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Chang-Min (Crop breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Baek, Man-Kee (Crop breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Young-Chan (Crop breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Suh, Jung-Pil (Crop breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jeong, Oh-Young (Crop breeding Division, National Institute of Crop Science, Rural Development Administration)
  • 김석만 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 박현수 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 이창민 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 백만기 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 조영찬 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 서정필 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 정오영 (농촌진흥청 국립식량과학원 작물육종과)
  • Received : 2020.06.19
  • Accepted : 2020.09.14
  • Published : 2020.12.01

Abstract

Rice grain shape is one of the key components of grain yield and market value. An understanding of the genetic basis of the variation in grain shape could be used to improve grain shape. In this study, we developed a total of 265 F2 individuals derived from a cross between japonica cultivars (Josaeng-jado and Langi) and used this population for quantitative trait locus (QLT) analysis. Correlation analysis was performed to identify relationships between grain traits (GL: grain length, GW: grain width, L/W: ratio of length to width, TGW: 1,000 grain weight). The grain shape was positively correlated with GL and TGW, and negatively correlated with GW. In QTL analysis associated with grain shape, one QTL for GL, qGL5, detected on chromosome 5, explained 20.3% of the phenotypic variation (PV), while two QTLs, qGW5 (PV=36.1) and qGW7 (PV=26.1), for GW were identified on chromosomes 5 and 7, respectively. Evaluation of the effects of each of the QTLs on the grain shape in the population showed a significant difference in the grain size in positive lines compared with the lines without the QTLs. According to the QTL combination of the allelic-types, the grain shape of the tested lines varied from semi-round type to long spindle-shaped type. The results of this study extend our knowledge about the genetic pool governing the diversity of grain shape in japonica cultivars and could be used to improve the grain shape of this species through marker-assisted selective breeding in Korea.

본 연구는 단조로운 국내 벼 품종의 입형을 다양화하기 위하여 초장립종 자포니카 품종을 활용해 그 특성을 국내 벼 품종에 도입함으로써 입형이 다양한 새 품종을 개발하려는 기초 육종연구의 일환으로 수행되었다. 입형 다양화를 위하여 세장형 자포니카 벼 품종인 Langi와 입형이 극단적으로 원형에 가까운 자포니카형 조생자도를 교배하여 유전분석 및 QTL 탐색을 위한 mapping 집단을 육성하였고, 이를 이용하여 입형 관련 형질의 상관분석, QTL 분석, validation test 및 탐색된 QTL 효과를 검정한 결과는 다음과 같다. 1. 조생자도와 Langi 조합의 교배립을 생산하여 F2 집단을 육성하였고 출수 일수를 고려하여 최종 265 개체를 선발·수확하여 주요 형질에 대한 조사와 QTL 분석에 이용하였다. 2. 육성된 mapping집단의 입형 관련 형질들은 종자 길이에 대해 종자 장폭비(0.89)와 천립중(0.69)이 상대적으로 높은 상관계수를 나타냈고, 종자폭에 대해서는 종자 길이(-0.47)와 장폭비(-0.82)가 음의 상관을 나타냈으며 종자두께(0.43)는 정상관을 보였다. 3. QTL 분석 결과 종자 길이와 관련하여 벼 5번 염색체에서 PVE 값이 20.31%인 qGL5와 7번 염색체에서 PVE 값이 각각 36.07%와 26.11%인 qGW5와 qGW7을 탐색하였다. qGL5는 세장형인 Langi로부터 유래하였으며, 두 QTL(qGW5, qGW7)은 원형인 조생자도로부터 유래하였다. 4. Validation test결과 Langi는 자포니카형 벼(qsw5_N)에서는 매우 드문 qSW5형 대립유전자를 가지고 있으며 이것은 qGL5와 함께 작용하여 집단내에서 종자 길이신장에 관여했을 것으로 추정된다. 5. 탐색 QTL의 효과는 qGL5 (+)와 qGW5:qGW7 조합에서 중원형, 장원형, 세장형 등 입형의 변이가 다양하게 나타났는데 Langi가 자포니카 생태형이란 점과 QTL의 효과가 증명되어 MAS활용이 가능하다는 점 등 입형 다양화를 위한 육종사업에서의 효과 및 활용도가 다양할 것으로 생각된다.

Keywords

References

  1. Aya, K., T. Hobo, K. Sato-izawa, M. Ueguchi-tanaka, H. Kitano, and M. Matsuoka. 2014. A Novel A 2-Type Transcription Factor, SMALL ORGAN SIZE1, Controls organ size downstream of an auxin signaling pathway. Plant Cell Physiol. 55(5) : 897-912. https://doi.org/10.1093/pcp/pcu023
  2. Bai, X., L. Luo, W. Yan, M. R. Kovi, W. Zhan, and Y. Xing. 2010. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genomics 11: 16. https://doi.org/10.1186/1471-2164-11-16
  3. Calingacion, M., A. Laborte, A. Nelson, A. Resurreccion, J. C. Concepcion, et al., 2014. Diversity of global rice markets and science required for consumer-targeted rice breeding. PLoS One 9(1).
  4. Che, R., H. Tong, B. Shi, Y. Liu, S. Fang, D. Liu, Y. Xiao, B. Hu, L. Liu, H. Wang, M. Zhao, and C. Chu. 2015. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants 1 (December 2015).
  5. Chin, H. shiuan, Y. pei Wu, A. ling Hour, C. yang Hong, and Y. R. Lin. 2016. Genetic and Evolutionary Analysis of Purple Leaf Sheath in Rice. Rice 9(1) : 1-14.
  6. Choi, H. C. 2002. Current status and perspectives in varietal improvement of rice cultivars for high-quality and valueadded products. Korean J. Crop Sci. 47 : 15-32.
  7. Duan, P., Y. Rao, D. Zeng, Y. Yang, R. Xu, B. Zhang, G. Dong, Q. Qian, and Y. Li. 2014. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4 (MKK4), influences grain size in rice. Plant J. 77(4) : 547-557. https://doi.org/10.1111/tpj.12405
  8. Duan, P., J. Xu, D. Zeng, B. Zhang, M. Geng, G. Zhang, K. Huang, L. Huang, R. Xu, S. Ge, Q. Qian, and Y. Li. 2017. Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice. Mol. Plant 10(5) : 685-694. https://doi.org/10.1016/j.molp.2017.03.009
  9. Fan, C., Y. Xing, H. Mao, T. Lu, B. Han, C. Xu, X. Li, and Q. Zhang. 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112(6) : 1164-1171. https://doi.org/10.1007/s00122-006-0218-1
  10. Gao, F. yuan, L. hua Zeng, L. Qiu, X. J. Lu, J. S. Ren, X. T. Wu, X. W. Su, Y. M. Gao, and G. J. Ren. 2016. QTL mapping of grain appearance quality traits and grain weight using a recombinant inbred population in rice (Oryza sativa L.). J. Integr. Agric. 15(8) : 1693-1702. https://doi.org/10.1016/S2095-3119(15)61259-X
  11. Hadagal, B.N., A. Manjunath, and J. V Goud. 1981. Linkage of genes for anthocyanin pigmentation in rice (Oryza sativa L.). Euphytica 30(3) : 747-754. https://doi.org/10.1007/BF00038804
  12. Huang, R., L. Jiang, J. Zheng, T. Wang, H. Wang, Y. Huang, and Z. Hong. 2013. Genetic bases of rice grain shape: So many genes, so little known. Trends Plant Sci. 18(4) : 218-226. https://doi.org/10.1016/j.tplants.2012.11.001
  13. Huang, X., Q. Qian, Z. Liu, H. Sun, S. He, D. Luo, G. Xia, C. Chu, J. Li, and X. Fu. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41(4) : 494-497. https://doi.org/10.1038/ng.352
  14. IRRI. 2013 . Standard Evaluation System for Rice. 5th ed. International Rice Research Institute, Manila, Phillippines.
  15. Ishimaru, K., N. Hirotsu, Y. Madoka, N. Murakami, N. Hara, H. Onodera, T. Kashiwagi, K. Ujiie, B.I. Shimizu, A. Onishi, H. Miyagawa, and E. Katoh. 2013. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 45(6) : 707-711. https://doi.org/10.1038/ng.2612
  16. Jiang, G. H., X. Y. Hong, C. G. Xu, X. H. Li, and Y. Q. He. 2005. Identification of quantitative trait loci for grain appearance and milling quality using a doubled-haploid rice population. J. Integr. Plant Biol. 47(11) : 1391-1403. https://doi.org/10.1111/j.1744-7909.2005.00089.x
  17. Kang, H.-J., I.-K. Hwang, K.-S. Kim, and H.-C. Choi. 2006. Comparison of the Physicochemical Properties and Ultrastructure of Japonica and Indica Rice Grains. J. Agric. Food Chem. 54 : 4833-4838. https://doi.org/10.1021/jf060221+
  18. Lee, C. M., K. M. Lee, M. K. Baek, W. J. Kim, J. P. Suh, O. Y. Jeong, Y. C. Cho, H. S. Park, and S. M. Kim. 2020. Characterization of traits related to grain shape in Korean rice varieties. Korean. J. Crop. Sci. 65(3) :199-213. https://doi.org/10.7740/KJCS.2020.65.3.199
  19. Li, Y., C. Fan, Y. Xing, Y. Jiang, L. Luo, L. Sun, D. Shao, C. Xu, X. Li, J. Xiao, Y. He, and Q. Zhang. 2011. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43(12) : 1266-1269. https://doi.org/10.1038/ng.977
  20. Liu, Q., R. Han, K. Wu, J. Zhang, Y. Ye, S. Wang, J. Chen, Y. Pan, Q. Li, X. Xu, J. Zhou, D. Tao, Y. Wu, and X. Fu. 2018. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat. Commun. 9(1) : 852. https://doi.org/10.1038/s41467-018-03047-9
  21. McCouch, S.R. 2008. Gene nomenclature system for rice. Rice 1(1) : 72-84. https://doi.org/10.1007/s12284-008-9004-9
  22. Meng, L., H. Li, L. Zhang, and J. Wang. 2015. QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 3(3) : 269-283. https://doi.org/10.1016/j.cj.2015.01.001
  23. Park, H.-S., M.-K. Baek, J.-K. Nam, W.-C. Shin, J.-M. Jeong, G.-M. Lee, S.-G. Park, C.-S. Kim, Y.-C. Cho, and B.-K. Kim. 2017. Development and Characterization of Breeding Materials with Diverse Grain Size and Shape in japonica Rice. Korean J. Breed. Sci. 49(4) : 369-389. https://doi.org/10.9787/KJBS.2017.49.4.369
  24. Park, H., M. Baek, J. Nam, W. Shin, G. Lee, S. Park, C. Lee, C. Kim, and Y. Cho. 2018. Development and characterization of japonica rice line with long and spindle-shaped grain. Korean J. Breed. Sci. 50(2) : 116-130. https://doi.org/10.9787/KJBS.2018.50.2.116
  25. Qi, P., Y.-S. Lin, X.-J. Song, J.-B. Shen, W. Huang, J.-X. Shan, M.-Z. Zhu, L. Jiang, J.-P. Gao, and H.-X. Lin. 2012. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res. 22(12) : 1666-80. https://doi.org/10.1038/cr.2012.151
  26. RDA (Rural Development Administration). 2012. Manual for standard evaluation method in agricultural experiment and research. RDA Press, Suwon (Korea).
  27. Sakamoto, W., M. Murata, and M. Maekawa. 2003. Complex organization of the rice purple leaf locus involved in tissuespecific accumulation of antocyanin. Advances in rice genetics. Int. Rice Res. Inst.
  28. Shomura, A., T. Izawa, K. Ebana, T. Ebitani, H. Kanegae, S. Konishi, and M. Yano. 2008. Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40(8) : 1023-1028. https://doi.org/10.1038/ng.169
  29. Si, L., J. Chen, X. Huang, H. Gong, J. Luo, et al. 2016. OsSPL13 controls grain size in cultivated rice. Nat. Genet. 48(4) : 447-456. https://doi.org/10.1038/ng.3518
  30. Song, X. J., W. Huang, M. Shi, M. Z. Zhu, and H. X. Lin. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39(5) : 623-630. https://doi.org/10.1038/ng2014
  31. Voorrips, R. E. 2002. MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. J. Hered. 93(1) : 77-78. https://doi.org/10.1093/jhered/93.1.77
  32. Wan, X. Y., J. Wan, J. Weng, L. Jiang, J. Bi, C. Wang, and H. Zhai. 2005. Stability of QTL for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor. Appl. Genet. 110 : 1334-1346. https://doi.org/10.1007/s00122-005-1976-x
  33. Wang, S., S. Li, Q. Liu, K. Wu, J. Zhang, S. Wang, Y. Wang, X. Chen, Y. Zhang, C. Gao, F. Wang, H. Huang, and X. Fu. 2015. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47(8) : 949-954. https://doi.org/10.1038/ng.3352
  34. Wang, S., K. Wu, Q. Yuan, X. Liu, Z. Liu, X. Lin, R. Zeng, H. Zhu, G. Dong, Q. Qian, G. Zhang, and X. Fu. 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44(8) : 950-954. https://doi.org/10.1038/ng.2327
  35. Weng, J., S. Gu, X. Wan, H. Gao, T. Guo, N. Su, C. Lei, X. Zhang, Z. Cheng, X. Guo, J. Wang, L. Jiang, H. Zhai, and J. Wan. 2008. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 18 : 1199-1209. https://doi.org/10.1038/cr.2008.307
  36. Wu, K., X. Xu, N. Zhong, H. Huang, J. Yu, Y. Ye, Y. Wu, and X. Fu. 2018. The rational design of multiple molecular modulebased assemblies for simultaneously improving rice yield and grain quality. J. Genet. Genomics 45(6) : 337-341. https://doi.org/10.1016/j.jgg.2018.03.007
  37. Yin, C., H. Li, S. Li, L. Xu, Z. Zhao, and J. Wang. 2015. Genetic dissection on rice grain shape by the two-dimensional image analysis in one japonica × indica population consisting of recombinant inbred lines. Theor. Appl. Genet. 128(10) : 1969-1986. https://doi.org/10.1007/s00122-015-2560-7
  38. Zhou, Y., J. Miao, H. Gu, X. Peng, M. Leburu, et al. 2015. Natural variations in SLG7 regulate grain shape in rice. Genetics 201(4) : 1591-1599 https://doi.org/10.1534/genetics.115.181115