References
- Adams, M. J., Antoniw, J. F. and Kreuze, J. 2009. Virgaviridae: a new family of rod-shaped plant viruses. Arch. Virol. 154:1967-1972. https://doi.org/10.1007/s00705-009-0506-6
- Adkins, S., Kamenova, I., Achor, D. and Lewandowski, D. J. 2003. Biological and molecular characterization of a novel tobamovirus with a unique host range. Plant Dis. 87:1190-1196. https://doi.org/10.1094/PDIS.2003.87.10.1190
- Adkins, S., Kamenova, I., Chiemsombat, P., Baker, C. A. and Lewandowski, D. J. 2006. Tobamoviruses from hibiscus in Florida and beyond. Acta Hortic. 722:65-70. https://doi.org/10.17660/actahortic.2006.722.7
- Baulcombe, D. 2004. RNA silencing in plants. Nature 431:356-363. https://doi.org/10.1038/nature02874
- Beauchemin, C. and Laliberte, J.-F. 2007. The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during turnip mosaic virus infection. J. Virol. 81:10905-10913. https://doi.org/10.1128/JVI.01243-07
- Blevins, T., Rajeswaran, R., Shivaprasad, P. V., Beknazariants, D., Si-Ammour, A., Park, H.-S., Vazquez, F., Robertson, D., Meins, F. Jr., Hohn, T. and Pooggin, M. M. 2006. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 34:6233-6246. https://doi.org/10.1093/nar/gkl886
- Chen, S., Yu, N., Yang, S., Zhong, B. and Lan, H. 2018. Identification of Telosma mosaic virus infection in Passiflora edulis and its impact on phytochemical contents. Virol. J. 15:168. https://doi.org/10.1186/s12985-018-1084-6
- Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K. D., Carrington, J. C. and Voinnet, O. 2006. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68-71. https://doi.org/10.1126/science.1128214
- Ding, S.-W. 2010. RNA-based antiviral immunity. Nat. Rev. Immunol. 10:632-644. https://doi.org/10.1038/nri2824
- Donaire, L., Barajas, D., Martinez-Garcia, B., Martinez-Priego, L., Pagan, I. and Llave, C. 2008. Structural and genetic requirements for the biogenesis of Tobacco rattle virus-derived small interfering RNAs. J. Virol. 82:5167-5177. https://doi.org/10.1128/JVI.00272-08
- Donaire, L., Wang, Y., Gonzalez-Ibeas, D., Mayer, K. F., Aranda, M. A. and Llave, C. 2009. Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203-214. https://doi.org/10.1016/j.virol.2009.07.005
- Gao, R., Niu, S., Dai, W., Kitajima, E. and Wong, S.-M. 2016. Hibiscus latent Fort Pierce virus in Brazil and synthesis of its biologically active full-length cDNA clone. Virus Genes 52:754-757. https://doi.org/10.1007/s11262-016-1344-8
- Ho, T., Wang, H., Pallett, D. and Dalmay, T. 2007. Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins. FEBS Lett. 581:3267-3272. https://doi.org/10.1016/j.febslet.2007.06.022
- Kamenova, I. and Adkins, S. 2004. Transmission, in planta distribution, and management of Hibiscus latent Fort Pierce virus, a novel tobamovirus isolated from Florida Hibiscus. Plant Dis. 88:674-679. https://doi.org/10.1094/PDIS.2004.88.6.674
- Kreuze, J. F., Perez, A., Untiveros, M., Quispe, D., Fuentes, S., Barker, I. and Simon, R. 2009. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1-7. https://doi.org/10.1016/j.virol.2009.03.024
- Lan, H., Lai, B., Zhao, P., Dong, X., Wei, W., Ye, Y. and Wu, Z. 2020. Cucumber mosaic virus infection modulated the phytochemical contents of Passiflora edulis. Microb. Pathog. 138:103828. https://doi.org/10.1016/j.micpath.2019.103828
- Lan, H.-H., Wang, C.-M., Chen, S.-S. and Zheng, J.-Y. 2019. siRNAs derived from Cymbidium mosaic virus and Odontoglossum ringspot virus down-modulated the expression levels of endogenous genes in Phalaenopsis equestris. Plant Pathol. J. 35:508-520. https://doi.org/10.5423/PPJ.OA.03.2019.0055
- Lan, H., Chen, H., Liu, Y., Jiang, C., Mao, Q., Jia, D., Chen, Q. and Wei, T. 2015. Small interfering RNA pathway modulates initial viral infection in midgut epithelium of insect after ingestion of virus. J. Virol. 90:917-929. https://doi.org/10.1128/JVI.01835-15
- Lan, H., Wang, H., Chen, Q., Chen, H., Jia, D., Mao, Q. and Wei, T. 2016. Small interfering RNA pathway modulates persistent infection of a plant virus in its insect vector. Sci. Rep. 6:20699. https://doi.org/10.1038/srep20699
- Li, Y., Deng, C., Shang, Q., Zhao, X., Liu, X. and Zhou, Q. 2016. Characterization of siRNAs derived from cucumber green mottle mosaic virus in infected cucumber plants. Arch. Virol. 161:455-458. https://doi.org/10.1007/s00705-015-2687-5
- Liu, C., Chen, Z., Hu, Y., Ji, H., Yu, D., Shen, W., Li, S., Ruan, J., Bu, W. and Gao, S. 2018. Complemented palindromic small RNAs first discovered from SARS coronavirus. Genes (Basel) 9:442. https://doi.org/10.3390/genes9090442
- Mandadi, K. K. and Scholthof, K.-B. G. 2015. Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon. Plant Cell 27:71-85. https://doi.org/10.1105/tpc.114.133991
- Matsui, Y., Adkins, S. and Natsuaki, K. T. 2005. Hibiscus latent Fort Pierce virus (HLFPV) from Hibiscus rosa-sinesis in Japan and Indonesia. Jpn. J. Phytopathol. 71:232-233 (in Japanese)
- Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G. J. and Qi, Y. 2008. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5'-terminal nucleotide. Cell 133:116-127. https://doi.org/10.1016/j.cell.2008.02.034
- Mitter, N., Koundal, V., Williams, S. and Pappu, H. 2013. Differential expression of Tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants. PLoS ONE 8:e76276. https://doi.org/10.1371/journal.pone.0076276
- Molnar, A., Csorba, T., Lakatos, L., Varallyay, E., Lacomme, C. and Burgyan, J. 2005. Plant virus-derived small interfering RNAs originate predominantly from highly structured singlestranded viral RNAs. J. Virol. 79:7812-7818. https://doi.org/10.1128/JVI.79.12.7812-7818.2005
- Morel, J.-B., Godon, C., Mourrain, P., Beclin, C., Boutet, S., Feuerbach, F., Proux, F. and Vaucheret, H. 2002. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in posttranscriptional gene silencing and virus resistance. Plant Cell 14:629-639. https://doi.org/10.1105/tpc.010358
- Nerva, L., Vallino, M., Turina, M. and Ciuffo, M. 2018. Identification and characterization of Hibiscus latent Fort Pierce virus in Italy. J. Plant Pathol. 100:145. https://doi.org/10.1007/s42161-018-0036-8
- Niu, X., Sun, Y., Chen, Z., Li, R., Padmanabhan, C., Ruan, J., Kreuze, J. F., Ling, K., Fei, Z. and Gao, S. 2017. Using small RNA-seq data to detect siRNA duplexes induced by plant viruses. Genes (Basel) 8:163. https://doi.org/10.3390/genes8060163
- Prabha, K., Baranwal, V. K. and Jain, R. K. 2013. Applications of next generation high throughput sequencing technologies in characterization, discovery and molecular interaction of plant viruses. Indian J. Virol. 24:157-165. https://doi.org/10.1007/s13337-013-0133-4
- Qu, F., Ye, X. and Morris, T. J. 2008. Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc. Natl. Acad. Sci. U. S. A. 105:14732-14737. https://doi.org/10.1073/pnas.0805760105
- Rubio, M., Rodriguez-Moreno, L., Ballester, A. R., de Moura, M. C., Bonghi, C., Candresse, T. and Martinez-Gomez, P. 2015. Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq. Mol. Plant Pathol. 16:164-176. https://doi.org/10.1111/mpp.12169
- Sharma, N., Sahu, P. P., Puranik, S. and Prasad, M. 2013. Recent advances in plant-virus interaction with emphasis on small interfering RNAs (siRNAs). Mol. Biotechnol. 55:63-77. https://doi.org/10.1007/s12033-012-9615-7
- Vaucheret, H. 2006. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 20:759-771. https://doi.org/10.1101/gad.1410506
- Wang, A. 2015. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu. Rev. Phytopathol. 53:45-66. https://doi.org/10.1146/annurev-phyto-080614-120001
- Xia, Z., Peng, J., Li, Y., Chen, L., Li, S., Zhou, T. and Fan, Z. 2014. Characterization of small interfering RNAs derived from Sugarcane mosaic virus in infected maize plants by deep sequencing. PLoS ONE 9:e97013. https://doi.org/10.1371/journal.pone.0097013
- Xu, D. and Zhou, G. 2017. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol. J. 14:27. https://doi.org/10.1186/s12985-017-0699-3
- Yan, F., Zhang, H., Adams, M. J., Yang, J., Peng, J., Antoniw, J. F., Zhou, Y. and Chen, J. 2010. Characterization of siRNAs derived from rice stripe virus in infected rice plants by deep sequencing. Arch. Virol. 155:935-940. https://doi.org/10.1007/s00705-010-0670-8
- Yang, J., Zheng, S.-L., Zhang, H.-M., Liu, X.-Y., Li, J., Li, J.-M. and Chen, J.-P. 2014. Analysis of small RNAs derived from Chinese wheat mosaic virus. Arch. Virol. 159:3077-3082. https://doi.org/10.1007/s00705-014-2155-7
- Yoshida, T., Kitazawa, Y., Komatsu, K., Neriya, Y., Ishikawa, K., Fujita, N., Hashimoto, M., Maejima, K., Yamaji, Y. and Namba, S. 2014. Complete nucleotide sequence and genome structure of a Japanese isolate of hibiscus latent Fort Pierce virus, a unique tobamovirus that contains an internal poly(A) region in its 3′ end. Arch. Virol. 159:3161-3165. https://doi.org/10.1007/s00705-014-2175-3