DOI QR코드

DOI QR Code

Synergistic Interactions of Schizostatin Identified from Schizophyllum commune with Demethylation Inhibitor Fungicides

  • Park, Min Young (Department of Biosystems and Biotechnology, Korea University Graduate School) ;
  • Jeon, Byeong Jun (Department of Biosystems and Biotechnology, Korea University Graduate School) ;
  • Kang, Ji Eun (Department of Biosystems and Biotechnology, Korea University Graduate School) ;
  • Kim, Beom Seok (Department of Biosystems and Biotechnology, Korea University Graduate School)
  • 투고 : 2020.07.29
  • 심사 : 2020.09.28
  • 발행 : 2020.12.01

초록

Botrytis cinerea, which causes gray mold disease in more than 200 plant species, is an economically important pathogen that is mainly controlled by synthetic fungicides. Synergistic fungicide mixtures can help reduce fungicide residues in the environment and mitigate the development of fungicide-resistant strains. In this study, we screened microbial culture extracts on Botrytis cinerea to identify an antifungal synergist for tebuconazole. Among the 4,006 microbial extracts screened in this study, the culture extract from Schizophyllum commune displayed the most enhanced activity with a sub-lethal dosage of tebuconazole, and the active ingredient was identified as schizostatin. In combination with 5 ㎍/ml tebuconazole, schizostatin (1 ㎍/ml) showed disease control efficacy against gray mold on tomato leaf similar to that achieved with 20 ㎍/ml tebuconazole treatment alone. Interestingly, schizostatin showed demethylation inhibitor (DMI)-specific synergistic interactions in the crossed-paper strip assay using commercial fungicides. In a checkerboard assay with schizostatin and DMIs, the fractional inhibitory concentration values were 0.0938-0.375. To assess the molecular mechanisms underlying this synergism, the transcription levels of the ergosterol biosynthetic genes were observed in response to DMIs, schizostatin, and their mixtures. Treatment with DMIs increased the erg11 (the target gene of DMI fungicides) expression level 15.4-56.6-fold. However, treatment with a mixture of schizostatin and DMIs evidently reverted erg11 transcription levels to the pre-DMI treatment levels. These results show the potential of schizostatin as a natural antifungal synergist that can reduce the dose of DMIs applied in the field without compromising the disease control efficacy of the fungicides.

키워드

참고문헌

  1. Ahmad, A., Wani, M. Y., Khan, A., Manzoor, N. and Molepo, J. 2015. Synergistic interactions of eugenol-tosylate and its congeners with fluconazole against Candida albicans. PLoS ONE 10:e0145053. https://doi.org/10.1371/journal.pone.0145053
  2. De Medeiros Barbosa, I., da Costa Medeiros, J. A., de Oliveira, K. A. R., Gomes-Neto, N. J., Tavares, J. F., Magnani, M. and de Souza, E. L. 2016. Efficacy of the combined application of oregano and rosemary essential oils for the control of Escherichia coli, Listeria monocytogenes and Salmonella Enteritidis in leafy vegetables. Food Control 59:468-477. https://doi.org/10.1016/j.foodcont.2015.06.017
  3. Doke, S. K., Raut, J. S., Dhawale, S. and Karuppayil, S. M. 2014. Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin. J. Gen. Appl. Microbiol. 60:163-168. https://doi.org/10.2323/jgam.60.163
  4. Dutta, S., Woo, E.-E., Yu, S.-M., Nagendran, R., Yun, B.-S. and Lee, Y. H. 2019. Control of anthracnose and gray mold in pepper plants using culture extract of white-rot fungus and active compound schizostatin. Mycobiology 47:87-96. https://doi.org/10.1080/12298093.2018.1551833
  5. Fillinger, S. and Elad, Y. 2016. Botrytis: the fungus, the pathogen and its management in agricultural systems. Springer International Publishing, Cham, Switzerland. 486 pp.
  6. Gisi, U. 1996. Synergistic interaction of fungicides in mixtures. Phytopathology 86:1273-1279.
  7. Gisi, U., Binder, H. and Rimbach, E. 1985. Synergistic interactions of fungicides with different modes of action. Trans. Br. Mycol. Soc. 85:299-306. https://doi.org/10.1016/s0007-1536(85)80192-3
  8. Hayashi, K., Schoonbeek, H.-J. and De Waard, M. A. 2003. Modulators of membrane drug transporters potentiate the activity of the DMI fungicide oxpoconazole against Botrytis cinerea. Pest Manag. Sci. 59:294-302. https://doi.org/10.1002/ps.637
  9. Henry, K. W., Nickels, J. T. and Edlind, T. D. 2000. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob. Agents Chemother. 44:2693-2700. https://doi.org/10.1128/AAC.44.10.2693-2700.2000
  10. Holb, I. J. and Schnabel, G. 2008. The benefits of combining elemental sulfur with a DMI fungicide to control Monilinia fructicola isolates resistant to propiconazole. Pest Manag. Sci. 64:156-164. https://doi.org/10.1002/ps.1492
  11. Jarvis, W. R. 1977. Botryotinia and Botrytis species: taxonomy, physiology and pathogenicity: a guide to the literature. Canada Department of Agriculture, Ottawa, Canada. 206 pp.
  12. Joseph-Horne, T. and Hollomon, D. W. 1997. Molecular mecha-nisms of azole resistance in fungi. FEMS Microbiol. Lett.149:141-149. https://doi.org/10.1016/S0378-1097(97)00043-8
  13. Kagan, I. A., Michel, A., Prause, A., Scheffler, B. E., Pace, P. and Duke, S. O. 2005. Gene transcription profiles of Saccharomy- ces cerevisiae after treatment with plant protection fungicides that inhibit ergosterol biosynthesis. Pestic. Biochem. Physiol. 82:133-153. https://doi.org/10.1016/j.pestbp.2005.02.002
  14. Khan, M. S. A. and Ahmad, I. 2011. Antifungal activity of essential oils and their synergy with fluconazole against drugresistant strains of Aspergillus fumigatus and Trichophyton rubrum. Appl. Microbiol. Biotechnol. 90:1083-1094. https://doi.org/10.1007/s00253-011-3152-3
  15. Kim, J. D., Park, M. Y., Jeon, B. J. and Kim, B. S. 2019. Disease control efficacy of 32,33-didehydroroflamycoin produced by Streptomyces rectiviolaceus strain DY46 against gray mold of tomato fruit. Sci. Rep. 9:13533. https://doi.org/10.1038/s41598-019-49779-6
  16. Kim, J. H., Faria, N. C. G., Martins, M. D. L., Chan, K. L. and Campbell, B. C. 2012. Enhancement of antimycotic activity of amphotericin B by targeting the oxidative stress response of Candida and Cryptococcus with natural dihydroxybenzaldehydes. Front. Microbiol. 3:261. https://doi.org/10.3389/fmicb.2012.00261
  17. Kim, J. H., Campbell, B. C., Mahoney, N., Chan, K. L., Molyneux, R. J. and Xiao, C. L. 2010. Use of chemosensitization to overcome fludioxonil resistance in Penicillium expansum. Lett. Appl. Microbiol. 51:177-183. https://doi.org/10.1111/j.1472-765X.2010.02875.x
  18. Kogen, H., Tago, K., Kaneko, S., Hamano, K., Onodera, K., Haruyama, H., Minagawa, K., Kinoshita, T., Ishikawa, T., Tanimoto, T. and Tsujita, Y. 1996. Schizostatin, a novel squalene synthase inhibitor produced by the mushroom, Schizophyllum commune. II. Structure elucidation and total synthesis. J. Antibiot. 49:624-630. https://doi.org/10.7164/antibiotics.49.624
  19. Kuck, K.-H. 2007. QoI fungicides: resistance mechanisms and its practical importance. In: Pesticide chemistry: crop protection, public health, environmental safety, eds. by H. Ohkawa, H. Miyagawa and P. W. Lee, pp. 275-283. Wiley-VCH, Weinheim, Germany.
  20. Leroux, P. 2007. Chemical control of Botrytis and its resistance to chemical fungicides. In: Botrytis: biology, pathology and control, eds. by Y. Elad, B. Williamson, P. Tudzynski and N. Delen, pp. 195-222. Springer, Dordrecht, Netherlands.
  21. Liu, X., Jiang, J., Shao, J., Yin, Y. and Ma, Z. 2010. Gene transcription profiling of Fusarium graminearum treated with an azole fungicide tebuconazole. Appl. Microbiol. Biotechnol. 85:1105-1114. https://doi.org/10.1007/s00253-009-2273-4
  22. Meletiadis, J., Mouton, J. W., Meis, J. F. M. and Verweij, P. E. 2003. In vitro drug interaction modeling of combinations of azoles with terbinafine against clinical Scedosporium prolificans isolates. Antimicrob. Agents and Chemother. 47:106-117. https://doi.org/10.1128/AAC.47.1.106-117.2003
  23. Nyilasi, I., Kocsube, S., Krizsan, K., Galgoczy, L., Pesti, M., Papp, T. and Vagvolgyi, C. 2010. In vitro synergistic interactions of the effects of various statins and azoles against some clinically important fungi. FEMS Microbiol. Lett. 307:175-184. https://doi.org/10.1111/j.1574-6968.2010.01972.x
  24. Oliver, R. P. and Hewitt, H. G. 2014. Fungicides in crop protection. 2nd ed. CABI, Wallingford, UK. 190 pp.
  25. OuYang, Q., Tao, N. and Jing, G. 2016. Transcriptional profiling analysis of Penicillium digitatum, the causal agent of citrus green mold, unravels an inhibited ergosterol biosynthesis pathway in response to citral. BMC Genomics 17:599. https://doi.org/10.1186/s12864-016-2943-4
  26. Perea, S., Gonzalez, G., Fothergill, A. W., Sutton, D. A. and Rinaldi, M. G. 2002. In vitro activities of terbinafine in combination with fluconazole, itraconazole, voriconazole, and posaconazole against clinical isolates of Candida glabrata with decreased susceptibility to azoles. J. Clin. Microbiol. 40:1831-1833. https://doi.org/10.1128/JCM.40.5.1831-1833.2002
  27. Rogers, P. D. and Barker, K. S. 2003. Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob. Agents Chemother. 47:1220-1227. https://doi.org/10.1128/AAC.47.4.1220-1227.2003
  28. Sharma, M., Manoharlal, R., Negi, A. S. and Prasad, R. 2010. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res. 10:570-578.
  29. Sharma, M., Manoharlal, R., Shukla, S., Puri, N., Prasad, T., Ambudkar, S. V. and Prasad, R. 2009. Curcumin modulates efflux mediated by yeast ABC multidrug transporters and is synergistic with antifungals. Antimicrob. Agents Chemother. 53:3256-3265. https://doi.org/10.1128/AAC.01497-08
  30. Sun, L., Sun, S., Cheng, A., Wu, X., Zhang, Y. and Lou, H. 2009. In vitro activities of retigeric acid B alone and in combination with azole antifungal agents against Candida albicans. Antimicrob. Agents Chemother. 53:1586-1591. https://doi.org/10.1128/AAC.00940-08
  31. Tanaka, Y. and Omura, S. 1993. Agroactive compounds of microbial origin. Annu. Rev. Microbiol. 47:57-87. https://doi.org/10.1146/annurev.mi.47.100193.000421
  32. Tanimoto, T., Onodera, K., Hosoya, T., Takamatsu, Y., Kinoshita, T., Tago, K., Kogen, H., Fujioka, T., Hamano, K. and Tsujita, Y. 1996. Schizostatin, a novel squalene synthase inhibitor produced by the mushroom, Schizophyllum commune. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot. 49:617-623. https://doi.org/10.7164/antibiotics.49.617
  33. Zeun, R. and Buchenauer, H. 1991. Synergistic effects of pyrazophos and propiconazole against Pyrenophora teres. J. Plant Dis. Prot. 98:661-668 (in German).
  34. Ziogas, B. N. and Malandrakis, A. A. 2015. Sterol biosynthesis inhibitors: C14 demethylation (DMIs). In: Fungicide resistance in plant pathogens, eds. by H. Ishii and D. W. Hollomon, pp. 199-216. Springer, Tokyo, Japan.