DOI QR코드

DOI QR Code

A study on nonlinear crash analysis of railway tankcar according to the overseas crashworthiness regulations

해외 충돌안전규정에 따른 유류탱크화차의 비선형충돌해석 연구

  • Son, Seung Wan (Infrastructue Safety Team, Korea Railroad Research Institute) ;
  • Jung, Hyun Seung (Railroad Major Accident Research Team, Korea Railroad Research Institute) ;
  • Ahn, Seung Ho (Railroad Major Accident Research Team, Korea Railroad Research Institute) ;
  • Kim, Jin Sung (Railroad Major Accident Research Team, Korea Railroad Research Institute)
  • 손승완 (한국철도기술연구원 시설안전팀) ;
  • 정현승 (한국철도기술연구원 중대사고대응기술연구팀) ;
  • 안승호 (한국철도기술연구원 중대사고대응기술연구팀) ;
  • 김진성 (한국철도기술연구원 중대사고대응기술연구팀)
  • Received : 2020.10.16
  • Accepted : 2020.11.06
  • Published : 2020.11.30

Abstract

The purpose of this study is to evaluate the structural risk and weakness of a railway tank car through nonlinear collision analysis according to overseas collision safety standards. The goal is to propose a crash safety design guideline for railway tank cars for transporting dangerous goods in Korea. We analyzed the buffer impact test procedure of railway freight cars prescribed in EN 12663-2 and the tank puncture test criteria prescribed in 49CFR179. A nonlinear finite element model according to each standard was modeled using LS-DYNA, a commercial finite element analysis solver. As a result of the buffing impact test simulation, it was predicted that plastic deformation would not occur at a collision speed of 6 km/h or less. However, plastic deformation was detected at the rear of the center sill and at the tank center supporting the structure at a collision speed of 8 km/h or more. As a result of a head-on test simulation of tank puncture, the outer tank shell was destroyed at the corner of the tank head when 4% of the kinetic energy of the impacter was absorbed. The tank shell was destroyed in the area of contact with the impacter in the test mode analysis of tank shell puncture when the kinetic energy of the moving vehicle was reduced by 30%. Therefore, the simulation results of the puncture test show that fracture at the tank shell and leakage of the internal material is expected. Consequently, protection and structural design reinforcement are required on railway tank cars in Korea.

본 연구의 목적은 국내 위험물 운송용 탱크화차의 충돌안전설계 가이드라인 제안을 위해 해외 충돌안전 기준에 따른 국내 위험물 운송화차에 대하여 비선형 충돌해석을 하여 위험성을 평가하고, 구조적 취약부를 분석하는데 있다. 유럽의 EN 12663-2에서 규정하는 화차의 완충시험 및 북미 49CFR179에서 규정하는 탱크 펑크시험기준을 분석하였으며, 상용 유한요소 해석 솔버인 LS-DYNA를 이용하여 각각 기준에 따른 비선형 유한요소모델을 모델링하였다. EN 규격의 완충시험 해석결과 충돌속도 6 km/h 이하에서는 소성변형이 발생하지 않을 것으로 예측하였지만, 8 km/h 이상의 충돌속도에서 중앙연결기를 통한 하중 전달으로 차체의 센터실 후방 및 탱크 중앙 지지부에서 소성변형을 확인하였다. 북미 법규의 탱크 펑크시험 해석결과 국내 탱크화차는 두부 충돌모드에서 충돌차량의 운동에너지를 4 % 이상 흡수시 두부의 코너부에서 탱크 외벽의 파괴가 발생하였으며, 측면 충돌모드에서 운동에너지 30 % 이상 흡수시에 충격체가 접촉하는 탱크 외벽의 파괴가 발생하여 내부 적재물의 누출을 예상하였다. 국내 유류 운송용 탱크화차의 해외 충돌안전 기준의 만족을 위해서는 차체 구조보강 설계 및 탱크 방호설계 수준을 향상시킬 필요가 있다.

Keywords

References

  1. Railway investigation report R13D0054, Investigation Report, Transportation Safety Board of Canada, Canada, pp.1-12.
  2. C. H. Lim, B. C. Goo, "A study on Improvement of Structural Evaluation Methods for Tank of Tank Car used for Carrying Hazard Materials", Fire Science and Engineering, Vol. 22. No. 4, pp.239-245, Sep. 2008.
  3. S. W. Son, H. S. Jung, J. H. Hwang, "A study on Analysis of Impact Decceleration Characteristics of Railway Freight Car", Journal of the Korea Academia-Indurstrial cooperation Society, Vol.21, No.3, pp.32-38, Mar. 2020. DOI: https://doi.org/10.5762/KAIS.2020.21.3.32
  4. S. Kirkpatrik, R. MacNeill, F. Gonzalez, "Analysis and Development of Performance-Based Requirements for Railroad Tank Cars", Proceedings of the 2014 Joint Rail Conference, ASME, CO, USA, pp.1-10, April 2014. DOI: http://dx.doi.org/10.1115/JRC2014-3765
  5. Establishment of Safety Regulations for Freight Trains and Tanks carrying Dangerous Goods, Technical Report, Korea Agency for Infrastructure Technology Advancement, Korea, pp.20-190.
  6. Specifications for Tank Cars, Code of Federal Regulation Title 49 Part 179, US Code, USA,
  7. European Committee for Standardization, BS EN12663-2 : 2010 Railway applications - Structural requirements of railway vehicle bodies Part 2:Freight wagon, 2010
  8. K. Ito, T. Okuda, R. Ueji, H. Fujii, C. Shiga, "Increse of Bending Fatigue Resistance for Tungsten Inert Gas Welded SS400 Steel Plates using Friction Stir Processing", Material and Design, Vol.61, pp.275-280, May. 2014. DOI: https://doi.org/10.1016/j.matdes.2014.04.076
  9. K. H. Chang, G. C. Jang, "Formulation of Dynamic Cyolio Plasticity Model for SM490 and Its Application to 3-Dimensional Elasto-Plastio Finite Element Analysis", Journal of the Korean Society of Civil Engineering A, Vol.26, No.3A, pp.465-471, May. 2006.
  10. J. H. Kim, B. C. Goo, W. H. You, "A Study on Mechanical Behavior of SM490A Material under Low Temperature Condition", Proceedings of Korean Society of Precision Engineering Conference, Korea, pp.585-586, Oct. 2006.
  11. Dynamic tests on selected structural steel, Technical Report, U.S Naval Civil Engineering Laboratory, USA.
  12. LSTC, LS-DYNA Theory manual, Livermore Software Technology Corporation, Michigan, 2015.
  13. DMSR Website, Couplers for Passenger cars, Freight cars[Internet], Available From: http://www.dmsr.co.kr/ (accessed Oct. 15, 2020)