DOI QR코드

DOI QR Code

SNP-based Genetic Diversity and Relationships Analysis of the Korean Native Black Goat and Crossbred Goat

SNP 정보를 활용한 재래흑염소와 교잡종 염소의 유전적 다양성 및 유연관계 분석

  • Lee, Sang-Hoon (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Lee, Jinwook (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Lee, Eun-Do (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Kim, Seungchang (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Lee, Sung-Soo (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Kim, Kwan-Woo (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
  • 이상훈 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 이진욱 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 이은도 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 김승창 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 이성수 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 김관우 (농촌진흥청 국립축산과학원 가축유전자원센터)
  • Received : 2020.10.12
  • Accepted : 2020.11.06
  • Published : 2020.11.30

Abstract

This study was conducted to investigate the genetic diversity and genetic taxonomic relationships between Korean native black goat (KNBG) populations and crossbred goats. The 45,658 common single nucleotide polymorphisms present in the KNBG strain and crossbred goat were used for the analysis. The expected and observed heterozygosity (which can be indicators of genetic diversity) were in the order of crossbred, Gyeongsang National University, Jangsu, then the Tongyeong strains. The variance component represents the degree of genetic diversity between groups. The highest variance (19.98 %) was between the Dangjin and Gyeongsang National University strains. The lowest variance (8.87 %) was between the Jangsu and Tongyeong strains. In addition, the genetic distance between the populations showed that Jangsu and Tongyeong formed one branch (they were very similar genetically). The Dangjin and the Gyeongsang National University strains appeared to form a second branch. Furthermore, the crossbred formed one branch with the Dangjin and the Gyeongsang National University strains. Therefore, the results of this study can be used as basic data to reduce unnecessary inbreeding and genetic resource flow between the KNBG populations. The basic data indicates the uniqueness of the genetic resources of the domestic lineage. These findings provide a basis for differentiating KNBG and Crossbred goats to use to improve the desirable characteristics of this species.

본 연구는 국내 재래흑염소 집단 (당진 계통, 장수 계통, 통영 계통 및 경상대 계통)과 교잡종 염소 집단의 유전적 다양성 및 유전적 유연관계를 조사하기 위해 수행되었다. 각 집단에 존재하는 공통 SNP 45,658개를 이용하여 분석에 이용하였다. 유전적 다양성의 지표가 될 수 있는 기대, 관측 이형접합도는 교잡종, 경상대, 장수, 통영 계통 순으로 나타났다. 집단 사이의 유전적 다양성 정도를 나타내는 분산 성분은 당진과 경상대 계통 사이에서 19.98%로 가장 높게 나타났으며, 장수와 통영 계통 사이에서 8.87%로 가장 낮게 나타났다. 또한, 집단 사이의 유전적 거리는 장수, 통영 계통에서 하나의 분지를 형성하였으며, 당진, 경상대 계통이 하나의 분지로 나타냈다. 또한, 교잡종 집단은 당진, 경상대 계통과 하나의 분지를 이루는 것으로 나타났다. 따라서 본 연구 결과는 국내 계통 간의 불필요한 근친교배와 유전자원 흐름을 줄이기 위한 기초자료 및 국내 재래흑염소 유전자원의 고유성을 나타내는 기초자료로 활용이 가능할 것으로 사료된다.

Keywords

References

  1. J. N. B. Shrestha, M. H. Fahmy, "Breeding goats for meat production: A review. 1. Genetics resources, management and breed evaluation", Small Rumin. Res, Vol. 58, No. 2, pp. 93-106, 2005. DOI: https://doi.org/10.1016/S0921-4488(03)00183-4
  2. M.. H Kang,. "Studies on the origin of Korean native goat", Korean J. Anim. Sci, Vol. 9, pp. 5-10, 1967.
  3. J. H. Kim, C. Y. Cho, S. B. Choi, Y. M. Cho, S. H. Yeon, B. S. Yang, "mtDNA diversity and phylogenetic analysis of Korean native goats", J. Life Sci, Vol. 21, No. 9, pp. 1329-1335, 2011. DOI: http://dx.doi.org/10.5352/JLS.2011.21.9.1329
  4. B. K. Kim, J. H. Lee, D. J. Jung, K. H. Cho, E. G. Hwang, M. S. Kim, "Effects of feeding herb resources powder on meat quality and sensory properties in Korean native black goat", Korean J Food Sci Anim Resour, Vol. 30, No. 5, pp. 811-818, 2010. DOI: https://doi.org/10.5851/kosfa.2010.30.5.811
  5. H. B. Song, I. H. Jo, M. J. Jun, Y. K. Park, K. C. Hong, J. C. Park, J. C. Do, H. S. Lim, "Study on the increasing method of income in the goat farmers", Daegu Univ press. Gyeongsan, pp. 47-50, 1999.
  6. S. H. Lee, J. Lee, D. Jeon, S. S. Lee, S. Kim, K. W. Kim, "Morphological characteristics and growth performance of Korean native black goats", J Korea Acad Industr Coop Soc, Vol. 20, No. 8, pp. 149-155, 2019. DOI: https://doi.org/10.5762/KAIS.2019.20.8.149
  7. A. Manunza, A. Noce, J. M. Serradilla, F. Goyache, A. Martinez, J. Capote, J. V. Delgado, J. Jordana, E. Munoz, A. Molina, V. Landi, A. Pons, V. Balteanu, A. Traore, M. Vidilla, M. Sanchez-Rodiguez, A. Sanchez, T. F. Cardoso, M. Amills, "A genome-wide perspective about the diversity and demographic history of seven Spanish goat breeds", Genet Sel Evol, Vol 48, No. 52, pmid:27455838, 2016. DOI: https://doi.org/10.1186/s12711-016-0229-6
  8. R. B. Onzima, M. R. Upadhyay, R. Mukiibi, E. Kanis, M. A. M. Groenen, R. Crooijmans, "Genome-wide population structure and admixture analysis reveals weak differentiation among Ugandan goat breeds", Anim Genet, Vol. 49 No. 1, pp. 59-70, 2018. DOI: https://doi.org/10.1111/age.12631
  9. B. K. Park, Y. S. Kim, J. Seong, H. S. Kong, "Analysis of genetic diversity and relationships of Korean native black goat using microsatellite markers", J Anim Reprod Biotechnol, Vol. 34, No. 3, pp. 183-189, 2019. DOI: https://doi.org/10.12750/JARB.34.3.183
  10. S. Suh, M. Byun, Y. S. Kim, M. J. Kim, S. B. Choi, Y. G. Ko, "Analysis of genetic diversity and relationships of Korean native goat populations by microsatellite Markers", J. Life Sci, Vol. 22, No. 11, pp. 1493-1499, 2012. DOI: https://doi.org/10.5352/JLS.2012.22.11.1493
  11. S. F .Lashmar, C. Visser, Ev. Marle-Koster, "SNP-based genetic diversity of South African commercial dairy and fiber goat breeds", Small Rumin. Res, Vol. 136, pp. 65-71, 2016. DOI: https://doi.org/10.1016/j.smallrumres.2016.01.006
  12. A. N. Grasso, V. Goldberg, E. A. Navajas, W. Iriarte, D. Gimeno, I. Aguilar, J. F. Medrano, G. Rincon, G. Ciappesoni, "Genomic variation and population structure detected by single nucleotide polymorphism arrays in Corriedale, Merino and Creole sheep", Genet. Mol. Biol, Vol. 37, No.2, pp. 389-395. 2014. DOI: https://doi.org/10.1590/S1415-47572014000300011
  13. C.C. Chang, C.C. Chow, L.C. Tellier, S. Vattikuti, S.M. Purcell, J.J. Lee, "Second-generation PLINK: rising to the challenge of larger and richer datasets", GigaScience, Vol. 4, No. 1, pp. 7, 2015. DOI: https://doi.org/10.1186/s13742-015-0047-8
  14. Z. N. Kamvar, J. F. Tabima, N. J. Grunwald, "Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction", PeerJ, Vol. 2, e281, 2014. DOI: https://doi.org/10.7717/peerj.281
  15. M. Nei, F. Tajima, Y. Tateno, "Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data", J. Mol. Evol, Vol. 19, pp. 153-170, 1983. DOI: https://doi.org/10.1007/BF02300753
  16. N. Takezaki, M. Nei, K. Tamura, "POPTREE2: Software for Constructing Population Trees from Allele Frequency Data and Computing Other Population Statistics with Windows Interface" Mol. Biol. Evol, Vol. 27, No. 4, pp. 747-752, 2010. DOI: https://doi.org/10.1093/molbev/msp312
  17. K. Tamura, J. Dudley, M. Nei, S. Kumar, "MEGA4: Molecular evolutionary genetics analysis (MEGA) Software version 4.0", Mol. Biol. Evol, Vol. 24, No. 8, pp. 1596-1599, 2007. DOI: https://doi.org/10.1093/molbev/msm092