DOI QR코드

DOI QR Code

Standing Stocks and Spatial Distribution of Meiofauna on Deep-sea Sediment in an Environmental Impact Experiment of a Candidate Site for Manganese Nodule Development, NE Pacific

북동태평양 Clarion-Clipperton 균열대의 망간단괴 채광을 위한 환경충격시험 예정 지역 심해 해저면에 서식하는 중형저서생물 현존량 및 공간 분포 특성

  • Min, Won-Gi (Ulleungdo/Dokdo Ocean Science Station, Korea Institute of Ocean Science and Technology) ;
  • Rho, Hyun Soo (East Sea Environment Research Center, KIOST) ;
  • Kim, Dongsung (Marine Ecosystem Research Center, KIOST)
  • 민원기 (한국해양과학기술원 울릉도.독도해양연구기지) ;
  • 노현수 (한국해양과학기술원 동해환경연구센터) ;
  • 김동성 (한국해양과학기술원 해양생태연구센터)
  • Received : 2020.10.29
  • Accepted : 2020.11.11
  • Published : 2020.11.30

Abstract

This study investigated the distributional pattern of meiobenthos associated with future deep-sea mining in the Korea Deep Ocean Study area present in the Clarion-Clipperton Fracture Zone (CCFZ) located in the southeastern part of the North Pacific Ocean. Standing stocks of meiobenthos were investigated in benthic impact experiment sites (BIS) and Korea Institute of Ocean Science & Technology long-term monitoring (KOMO) sites during the 2008-2014 annual field survey. A total of 14 taxa of meiobenthos were identified. Nematodes were the most abundant taxon (60-86%). Harpacticoid copepods (5-26%) and benthic foraminifera (1-12%) were also dominant at all sites. The total meiobenthic densities varied from 4 to 150 ind./10 cm2. The mean value of total meiobenthic abundance was higher at BIS than at KOMO sites, but there was no significant difference between the two sites. The mean values of the number of taxa and biomass at BIS and KOMO sites were similar. The mean abundance of nematodes that were the most dominant taxa was also higher at BIS than at KOMO sites. The standing stocks in our study sites were relatively lower than those previously reported at other CCFZ sites. These results seem to reflect a low organic concentration in the study area.

Keywords

References

  1. Ahnert, A., Schriever, G., 2001, Response of abyssal Copepoda Harpacticoida (Crustacea) and other meiobenthos to an artificial disturbance and its bearing on future mining for polymetallic nodules, Deep-Sea Res. II, 48, 3779-3794. https://doi.org/10.1016/S0967-0645(01)00067-4
  2. Burgess, R., 2001, An Improved protocol for separating meiofauna from sediments using colloidal silica sols, Mar. Ecol. Prog. Ser., 214, 161-165. https://doi.org/10.3354/meps214161
  3. Chung, J. S., Schriever, G., Sharma, R., Yamazaki, T., 2002, Deep seabed mining environment: Preliminary engineering and environmental assessment, ISOPE Special Report, OMS-EN-1, 1-19.
  4. Clarke, K. R., Gorley, R. N., 2006, Primer v6: user manual/tutorial, Primer-e Plymouth, 1-192.
  5. Gallucci, F., Moens, T., Fonseca, G., 2009, Small-scale spatial patterns of meio-benthos in the Arctic deep sea, Mar. Biodivers, 39, 9-25. https://doi.org/10.1007/s12526-009-0003-x
  6. Giere, O., 2009, Meiobenthology: The microscopic motile fauna of aquatic sediments (2nd edition), Springer -Verlag, Berlin Heidelberg, 1-546.
  7. Glover, A. G., Smith, C. R., 2003, The deep-sea floor ecosystem: current status and prospects of anthropogenic change by the year 2025, Environ. Conserv. 30, 219-241. https://doi.org/10.1017/S0376892903000225
  8. Guidi-Guilvard, L. D., Dallot, S., 2014, Metazoan meiobenthos temporal fluctuations in the deep NW Mediterranean Sea (DYFAMED-BENTHOS 1993-1995). Contribution of spatial variability and disturbance, Deep-Sea Res. I, 92, 127-140. https://doi.org/10.1016/j.dsr.2014.07.003
  9. Hyun, J. H., Choi, J. K., Yang, E. J., Kim, K. H., 1998, Biomass and productivity of bacterioplankton related to surface water divergence in the northeast equatorial Pacific Ocean, J. Microbiol., 36, 151-158.
  10. International Seabed Authority, 2011, Environmental management needs for exploration and exploitation of deep sea minerals, Report of a Workshop held by the International Seabed Authority in collaboration with the SOPAC Division of the Pacific Community, Nadi, Fiji, 1-52.
  11. Kalogeropoulou, V., Bett, B. J., Gooday, A. J., Lampadariou, N., Martinez Arbizu, P., Vanreusel, A., 2010, Temporal changes (1989-1999) in deep-sea metazoan meiofaunal assemblages on the Porcupine Abyssal Plain, NE Atlantic. Deep-Sea Res. II, 57, 1383-1395. https://doi.org/10.1016/j.dsr2.2009.02.002
  12. Miljutin, M. A., Miljutin, D. M., Mahatma, R., Gale'ron, J., 2010, Deep sea nematode assemblages of the Clarion -Clipperton Nodule Province (Tropical North-Eastern Pacific), Mar. Biodiv., 40, 1-15. https://doi.org/10.1007/s12526-009-0029-0
  13. Miljutin, D. M., Miljutin, M. A., Martinez, A. P., Galeron, J., 2011, Deep-sea nematode assemblage has not recovered 26 years after experimental mining of polymetallic nodules (Clarion-Clipperton fracture zone, tropical eastern Pacific), Deep-Sea Res. I, 58, 885-897. https://doi.org/10.1016/j.dsr.2011.06.003
  14. Min, W., Kim, D., Rho H. S., Chi, S. B., Son, S. K., 2018, Distribution and variability of the meiobenthic assemblages near the polymetallic nodule claim area of the Clarion-Clipperton fracture zone (subequatorial NE Pacific), Ocean Sci. J., 53, 315-336. https://doi.org/10.1007/s12601-018-0027-x
  15. Mokievskii, V. O., Udalov, A. A., Azovskii, A. I., 2007, Quantitative distribution of meiobenthos in deep-water zones of the world ocean, Oceanology, 47, 797-813. https://doi.org/10.1134/S0001437007060057
  16. Raghukumar, C., Loka Bharati P. A., Ansari, Z. A., Nair, S., Ingole, B., Sheelu, G., Mohandass, C., Nagendra Nath, B., Rodrigues, N., 2001, Bacterial standing stock, meiofauna and sediment-nutrient characteristics: indicators of benthic disturbance in the Central Indian Basin, Deep-Sea Res. II, 48, 3381-3399. https://doi.org/10.1016/S0967-0645(01)00047-9
  17. Radziejewska, T., 2002, Responses of deep-sea meiobenthic communities to sediment disturbance simulating effects of polymetallic nodule mining, Int. Rev. Hydrobiol., 87, 457-477. https://doi.org/10.1002/1522-2632(200207)87:4<457::AID-IROH457>3.0.CO;2-3
  18. Renaud-Mornant, J., Gourboult, N., 1990, Evaluation of abyssal meiobenthos in the eastern Pacific (Clarion -Clipperton fracture zone), Prog. Oceanogr. 24, 317-329. https://doi.org/10.1016/0079-6611(90)90041-Y
  19. Sharma, R., Nagender, B., Parthiban, G., Sankar, S. J., 2001, Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining, Deep-Sea Res. II, 48, 3363-3380. https://doi.org/10.1016/S0967-0645(01)00046-7
  20. Schratzberger, M., Jennings, S., 2002, Impacts of chronic trawling disturbance on meiofaunal communities, Mar. Biology, 141, 991-1000. https://doi.org/10.1007/s00227-002-0895-5
  21. Shimanaga, M., Nomaki, H., Suetsugu, K., Murayama, M., Kitazato, H., 2007, Standing stock of deep-sea metazoan meiofauna in the Sulu Sea and adjacent areas, Deep-Sea Res. II, 54, 131-144. https://doi.org/10.1016/j.dsr2.2006.11.003
  22. Shirayama, Y., 1983, Size structure of deep-sea meio- and macrobenthos in the western Pacific, Int. Rev. Ges. Hydrobiol., 68, 799-810. https://doi.org/10.1002/iroh.3510680605
  23. Shirayama, Y., Fukushima, T., Matsui, T., Kuboki, E., 2001, The responses of deep-sea benthic organisms to experimental removal of the surface sediment, Proceedings of the IV Ocean Mining Symposium, Szczecin, Poland, 77-81.
  24. Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K., Arbizu, P. M., 2008, Abyssal food limitation, ecosystem structure and climate change, Trend Ecol. Evol., 23, 518-528. https://doi.org/10.1016/j.tree.2008.05.002
  25. Snider, L. J., Burnett, B. R., Hessler, R. R., 1984, The composition and distribution of meiofauna and nanobiota in a central north Pacific deep-sea area, Deep-Sea Res. I, 31, 1225-1249. https://doi.org/10.1016/0198-0149(84)90059-1
  26. Soltwedel, T., Miljutina, M., Mokievsky, V., Thistle, D., Vepel, K., 2003, The meiobenthos of the Molloy Deep (5,600 m), Fram Strait, Arctic Ocean, Vie et Milieu, 53, 1-13.
  27. Sommer, S., Pfannkuche, O., 2000, Metazoan meiofauna of the deep Arabian Sea: standing stocks, size spectra and regional variability in relation to monsoon induced enhanced sedimentation regimes of particulate organic matter, Deep-Sea Res. II, 47, 2957-2977. https://doi.org/10.1016/S0967-0645(00)00054-0
  28. Tecchio, S., Ramirez-Llodra, E., Sarda, F., Company, J. B., Palomera, I., Mecho, A., Pedrosa-Pamies, R., Sanchez-Vidal, A., 2011, Drivers of deep Mediterranean megabenthos communities along longitudinal and bathymetric gradients, Mar. Ecol. Prog. Ser., 439, 181-192. https://doi.org/10.3354/meps09333
  29. Thiel, H., 1983, Meiobenthos and nanobenthos of the deep-sea, in: Rowe, G. T., Deep-sea biology, Wiley Interscience, New York, 167-230.
  30. Thiel, H., 1992, Deep-sea environmental disturbance and recovery potential, Int. Rev. Hydrobiol. 77, 331-339. https://doi.org/10.1002/iroh.19920770213
  31. Thistle, D., 2001, Harpacticoid copepods are successful in the soft-bottom deep sea, Hydrobiol., 453, 255-259. https://doi.org/10.1023/A:1013152909018
  32. Tietjen, J. H., 1971, Ecology and distribution of deep sea meiobenthos Off N. Carolina, Deep-Sea Res., 18, 941-957.
  33. Van Dover, C. L., 2011, Tighten regulations on deep-sea mining, Nature 470, 31-33. https://doi.org/10.1038/470031a
  34. Yang, E. J., Choi, J. K., Hyun, J. H., 2004, Distribution and structure of heterotrophic protist communities in the northeast equatorial Pacific Ocean, Mar. Biol. 146, 1-15. https://doi.org/10.1007/s00227-004-1412-9