DOI QR코드

DOI QR Code

Learning Effects of Flipped Learning based on Learning Analytics in SW Coding Education

SW 코딩교육에서의 학습분석기반 플립러닝의 학습효과

  • Pi, Su-Young (Dept. of Computer Software, Catholic University of Daegu)
  • 피수영 (대구가톨릭대학교 컴퓨터소프트웨어학부)
  • Received : 2020.08.24
  • Accepted : 2020.11.20
  • Published : 2020.11.28

Abstract

The study aims to examine the effectiveness of flipped learning teaching methods by using learning analytics to enable effective programming learning for non-major students. After designing a flipped learning programming class model applied with the ADDIE model, learning-related data of the lecture support system operated by the school was processed with crawling. By providing data processed with crawling through a dashboard so that the instructor can understand it easily, the instructor can design classes more efficiently and provide individually tailored learning based on this. As a result of analysis based on the learning-related data collected through one semester class, it was found that the department, academic year, attendance, assignment submission, and preliminary/review attendance had an effect on academic achievement. As a result of survey analysis, they responded that the individualized feedback of instructors through learning analysis was very helpful in self-directed learning. It is expected that it will serve as an opportunity for instructors to provide a foundation for enhancing teaching activities. In the future, the contents of social network services related to learners' learning will be processed with crawling to analyze learners' learning situations.

본 연구는 비전공자 학생들 대상으로 효과적인 프로그래밍 학습이 가능하도록 학습 분석을 활용한 플립러닝 교수법의 효과성을 살펴보고자 한다. ADDIE모형을 적용한 플립러닝 프로그래밍 수업모형을 설계한 후 본교에서 운영하고 있는 강의지원시스템의 학습관련 자료를 크롤링하였다. 크롤링 자료를 교수자가 쉽게 이해할 수 있도록 대시보드로 제공하여 교수자는 이를 바탕으로 수업을 보다 효율적으로 설계하여 개별 맞춤 학습이 가능하도록 하였다. 한 학기 수업을 통해 수집된 학습관련 데이터를 바탕으로 분석한 결과 학과, 학년, 출결여부, 과제제출 여부, 예/복습 수강여부가 학업성취도에 영향을 미치는 것으로 나타났으며, 설문 분석결과 학습 분석을 통한 교수자의 개별화된 피드백이 자기주도적 학습에 많은 도움이 되었다고 응답하였다. 본 연구는 학습자의 학습을 촉진시키고 교수자는 교수활동을 개선할 수 있는 기틀을 마련해 주는 계기가 될 것으로 기대한다. 향후 학습자들의 학습과 관련된 소셜네트워크서비스의 내용도 크롤링하여 학습자들의 학습상황을 분석하고자 한다.

Keywords

References

  1. J. K. Kim. (2019). Effect of Computational Thinking on Problem Solving Process in SW Education for non-CS Major Students. The Journal of Korea Multimedia Society, 22(4), 472-479. DOI:10.9717/kmms.2019.22.4.472
  2. J. Y. Park. (2015). Direction and prospect of SW education in the 2015 revised curriculum. KEDI Journal of educational policy, 42(3), 85-89.
  3. S. Y. Choi. (2017). Design and Application of an Instructional Model for Flipped learning of Programming Class. The Journal of Korean Association of Computer Education, 20(4), 27-36. DOI:10.32431/kace.2017.20.4.027
  4. K. M. Kim & H. S. Kim. (2014). A Case Study on Necessity of Computer Programming for Interdisciplinary Education. Journal of Digital Convergence, 12(11), 339-348. DOI:10.14400/JDC.2014.12.11.339
  5. E. S. Kang, S. I. Shim & K. J. Lee. (2019). Education Model Using PBL for IT Convergence Education of Non-Major in Liberal Arts Class: Focusing on Computing Thinking. Journal of Digital Contents Society , 20(11), 2159-2168. DOI:10.9728/dcs.2019.20.11.2159
  6. M. J. Lee. (2017). Exploring the Effect of SW Programming Curriculum and Content Development Model for Non-majors College Students : focusing on Visual Representation of SW Solutions. Journal of Digital Convergence, 18(7), 1313-1321. DOI:10.14400/JDC.2017.18.7.1313
  7. Y. S. Lee. (2018). Python-based Software Education Model for Non-Computer Majors. Journal of the Korea Convergence Society, 9(3), 73-78. DOI:10.15207/JKCS.2018.9.3.073
  8. K. S. Lee. (2019). Case Analysis for Constructing a Homogeneous Learning Group in Programming Lessons for Non-Specialists. Journal of Digital Convergence, 17(12), 59-65. DOI:10.14400/JDC.2019.17.12.059
  9. K. M. Kim & H. J. Kim. (2017). A Study on the Effect of Flipped Class by Analysis of Programming Achievement. The Journal of Korean Association of Computer Education, 20(4), 15-25. DOI:10.32431/kace.2017.20.4.015
  10. E. S. Yi & H. S. Lim. (2020). A Study on the Influence of Flip Learning Classes on Academic Performance in Primary Course of Technical University. The Journal of Korean Association of Computer Education, 23(3), 59-64. DOI:10.32431/kace.2020.23.3.059
  11. S. Y. Pi & S. J. Do. (2017). The Effectiveness of the Flipped Learning using the Smart Device. Journal of Digital Convergence, 15(4), 65-71. DOI:10.14400/JDC.2017.15.4.065
  12. D. S. Han. (2016). University Education and Contents in The Fourth Industrial Revolution. Humanities Contents, 42(9), 9-24. DOI:10.18658/humancon.2016.42.9.009
  13. S. H. Jin & M. N. Yoo. (2015). An Analytic Review of the studies on Learning Analytics based Dashboard in e-Learning Environments. Journal of Korean Association for Educational Information and Media, 21(2), 185-213. DOI:10.15833/KAFEIAM.2015.21.2.185
  14. Y. J. Park & I. H. Jo. (2014). Need Analysis for Learning Analytics Dashboard in LMS: Applying Activity Theory as an Analytic and design Tool. Journal of Educational Technology, 30(2), 221-258. DOI:10.17232/KSET.2014.30.2.221
  15. Long. P & Siemens. G. (2011). Penetrating the fog : Analytics in learning and education. EDUCAUSE Review, 46(5), 30-32.
  16. A. L. Dyckhoff, D. Zielke, M. Bültmann, M. A. Chatti & U. Schroeder. (2012). Design and Implementation of a Learning Analytics Toolkit for Teachers. Journal of Educational Technology & Society, 15(3), 58-76.
  17. M. A. Chatti, A. L. Dyckhoff, U. Schroeder & H. Thus. (2012). A Reference Model for Learning Analytics. International Journal of Technology Enhanced Learning, 4(5), 318-331. DOI:10.1504/IJTEL.2012.4.5.318
  18. J. H. Shin, J. W. Choi & W. Koh. (2015). A study on the Use of Learning Analytics in Higher Education: Focusing on the perspective of professors. Journal of Educational Technology , 31(2), 223-252. DOI:10.17232/KSET.2015.31.2.223
  19. K. Y. Lim, J. H. Eun, Y. J. Jung & H. N. Park. (2018). Exploratory study on the information design of online dashboard for learner-centered learning, The Journal of Korean Association of Computer Education, 21(3), 35-50. DOI:10.32431/kace.2018.21.3.035
  20. S. W. Bae, H. D. Lee & D. S. Cho. (2018). Design and Implementation of a Web Crawler System for Collection of Structured and Unstructured Data. Journal of Korea Multimedia Society, 21(2), 199-209. DOI:10.9717/kmms.201821.2.199
  21. H. J. kim, K. H. Kim & S. S. Shin. (2017). Crepe Search System Design using Web Crawling. Journal of Digital Convergence, 15(11), 261-269. DOI:10.14400/JDC.2017.15.11.261
  22. D. Y. Kim & J. T. Kim. (2009). Efficient Design of Web Searching Robot Engine Using Distributed Processing Method with Javascript Function. The Journal of the Korea Institute of Maritime Information & Communication Sciences, 13(12), 2595-2602.
  23. Y. G. Yu, K. B. Nam & K. R. Park. (2019). Implementation of web server monitoring system using crawling technology. Journal of the Korea Society of Computer and Information, 24(4), 123-128. DOI:10.9708/jksci.2019.24.04.123
  24. C. H. Lee. (2008). Model Development and Application of Creative Engineering Design Education Program Based on ADDIE Model. The Korean Journal of Technology Education, 8(1), 131-146. DOI:10.34138/KJTE.2008.8.1.131