References
- J. M. Bates & C. W. J. Granger. (1969). The Combination of Forecasts. Journal of the Operational Research Society, 20(4), 451-468. DOI : 10.1057/jors.1969.103
- Y. M. Yoo, H. B. Kim & S. H. Joo. (2010). An Analysis on the Competitiveness based on Industrial Structure Changes in Busan. Journal of Local Government Studis, 14(3), 295-313.
- B. S. Kim. (2008). Job Creation of Service Industry and Changes in Employment Structure in Terms of the Quality of Job. Monthly Labor Review, 40, 23-35.
- S. J. Kim & B. H. Choi. Input-Output Structural Decomposition Analysis on the Structure of Employment Change in Korean Manufacturing Industry. Journal of Industrial Economics and Business, 32(1), 375-403. DOI : 10.22558/jieb.2019.02.32.1.375.
- I. S. Jang. (2017). The effect of labor mobility on the relationship between technology innovation and employment. Sejong : KLI.
- L. K. Chung & J. B. Hong. (2018). An Empirical Study on the Relationship between Investment and Employment Growth : Focusing on the Differences between Industries. Korean Jouranl of Business Administration, 31(7), 1363-1382. DOI : 10.18032/kaaba.2018.31.7.1363.
- I. H. Song. (2009). An Economic Analysis on the Effect of Facility Investment on Productivity and Employment. Productivity Review, 23(3), 259-278. https://doi.org/10.15843/kpapr.23.3.200909.259
- D. K. Kim & S. Y. Park. (2013). Impact on Production and Employment of Consumption Structure Changes by Increasing Proportion of Old Population. Journal of Industrial Economics and Business, 26(6), 2519-2546.
- D. W. Kang. (2020). Effect of change in consumption patterns on employment. Sejong : KLI.
- J. H. Lee & J. Y. Hwang. (2016). The Employment Creation Effects of Exogenous Fiscal Shocks in Korea. Ordo Economics Journal, 19(1), 19-40. DOI : 10.20436/OEJ.2016.19.1.019.
- J. H. Lee & E. S. Lim. (2017). R&D Investment and Employment: Evidence from 15 Regions. The Korea Journal of Local Public Finance, 22(2), 167-190.
- M. S. Park. (2008). Analysis of dynamic relationship between exchange rate fluctuations and employment. Sejong : KIET.
- C. O. Rhee. (2011). Special Section Papers : Business Cycle and SME's Government-Supported Financing. Asia Pacific Journal of Small Business, 33(1), 17-32.
- J. E. Choi & D. W. Shin. (2019). The roles of differencing and dimension reduction in machine learning forecasting of employment level using the FRED big data. Communications for Statistical Applications and Methods, 26(5), 497-506. DOI : 10.29220/CSAM.2019.26.5.497
- D. H. Lee & T. H. Kim. (2020). Study on the Prediction Model for Employment of University Graduates Using Machine Learning Classification. The Journal of Information Systems, 29(2), 287-306. DOI : 10.5859/KAIS.2020.29.2.287
- S. S. Alduayj & K. Rajpoot. (2018, 18-19 Nov. 2018). Predicting Employee Attrition using Machine Learning. Paper presented at the 2018 International Conference on Innovations in Information Technology (IIT). DOI : 10.1109/INNOVATIONS.2018.8605976
- A. Adhikari. (2009). Factors affecting employee attrition: a multiple regression approach. IUP Journal of Management Research, 8(5), 38.
- M. Savic. (2006). Principal components analysis of employment in Eastern Europe. Panoeconomicus, 53(4), 427-437. DOI : 10.2298/PAN0604427S
- Y. Zhao, M. K. Hryniewicki, F. Cheng, B. Fu & X. Zhu. (2018). Employee turnover prediction with machine learning: A reliable approach. Paper presented at the Proceedings of SAI intelligent systems conference. DOI : 10.1007/978-3-030-01057-7
- N. J. Hsu, H. L. Hung & Y. M. Chang. (2008). Subset selection for vector autoregressive processes using lasso. Computational Statistics & Data Analysis, 52(7), 3645-3657. DOI : 10.1016/j.csda.2007.12.004
- A. Kreiner & J. V. Duca. (2019). Can machine learning on economic data better forecast the unemployment rate? Applied Economics Letters, 27(17), 1434-1437. DOI : 10.1080/13504851.2019.1688237
- T. Hastie, R. Tibshirani & J. Friedman. (2009). The elements of statistical learning: data mining, inference, and prediction, Springer Science & Business Media. DOI : 10.1111/j.1751-5823.2009.00095_18.x
- R. Tibshirani. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288. DOI : 10.1111/j.1467-9868.2011.00771.x
- V. Cherkassky & Y. Ma. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17(1), 113-126. DOI : 10.1016/S0893-6080(03)00169-2
- R. T. Clemen. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559-583. DOI : 10.1016/0169-2070(89)90012-5
- C. W. Granger & R. Ramanathan. (1984). Improved methods of combining forecasts. Journal of Forecasting, 3(2), 197-204. DOI : 10.1002/for.3980030207
- C. Aksu & S. I. Gunter. (1992). An empirical analysis of the accuracy of SA, OLS, ERLS and NRLS combination forecasts. International Journal of Forecasting, 8(1), 27-43. DOI : https://doi.org/10.1016/0169-2070(92)90005-T
- I. Guyon, J. Weston, S. Barnhill & V. Vapnik (2002). Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3), 389-422. DOI : 10.1023/A:1012487302797
- K. E. Rao & G. A. (2020). Rao, Ensemble learning with recursive feature elimination integrated software effort estimation: a novel approach. EVolutionary Intelligence, 1-12. DOI : 10.1007/s12065-020-00360-5