DOI QR코드

DOI QR Code

스프링요소를 이용한 풍력발전기용 슬루잉 베어링의 유한요소해석

Finite Element Analysis of Slewing Bearings for Wind Turbines Using Spring Elements

  • 한기봉 (중원대학교 항공기계공학과) ;
  • 강종훈 (중원대학교 항공기계공학과)
  • Han, Ki-Bong (Department of Aeromechanical Engineering, Jungwon University) ;
  • Kang, Jong-Hun (Department of Aeromechanical Engineering, Jungwon University)
  • 투고 : 2020.09.28
  • 심사 : 2020.11.20
  • 발행 : 2020.11.28

초록

본 연구는 풍력발전기용 베어링의 응력저감을 위한 설계와 검증에 관한 것이다. 일반적인 4점 접촉 볼베어링의 구조를 가지고 있는 슬루잉 베어링은 큰 모멘트 하중이 작용하면 접촉점이 레이스웨이 끝단부로 이동하여 국부적인 응력상승 문제가 발생한다. 본 연구에서는 이러한 접점 이동을 줄이기 위한 베어링을 설계하였다. 전통적인 볼베어링과 새로인 설계된 베어링의 극한하중 하에서의 변형거동을 볼을 스프링요소로 치환하여 유한요소해석을 통하여 계산하였다. 볼과 레이스웨이의 접촉응력은 변형거동 해석결과를 경계조건으로 입력하여 유한요소해석으로 계산하였다. 베어링 구조에 따른 접촉부 응력 비교를 통하여 베어링의 응력해석 방법의 효용성을 검증하였다.

This study is about design and verification of stress reduction of bearings for wind turbines. In a slewing bearing having a typical four-contact structure, the contact point moves to the end of the raceway due to a large moment load, resulting in a stress concentration. A bearing was designed to reduce such contact point movement. The deformation behavior of typical ball bearings and newly designed bearings was calculated through finite element analysis under ultimate load by replacing the ball with a spring element. The contact stress between the ball and the raceway was calculated by finite element analysis by inputting the deformation behavior analysis result as a boundary condition. The effectiveness of the bearing stress analysis method using spring elements was verified through comparison of the contact stress according to the bearing structure.

키워드

참고문헌

  1. GWEC. (2020). Global Wind Report 2019. Joyce Lee & Feng Zhao.
  2. Y.J. Jang & K.W. Kang.(2013) (Simplified Load Calculation and Structural Test for Scale Down Model of Small Wind Turbine Blade according to IEC 61400-2. Journal of The Korea Convergence Society, 4(3), 1-3. https://doi.org/10.15207/JKCS.2013.4.3.001
  3. T.A. Harris. (1991). Rolling Bearing Analysis. 3rd ed. New York: Wiley-Interscience.
  4. T.A. Harris. (2009). Wind Turbine Design Guideline DG03: Yaw and Pitch Rolling Bearing Life. NREL.
  5. S. Zupan & I. Prebil. (2001). Carrying angle and carrying capacity of a large single row ball bearing as a function of geometry parameters of the rolling contact and the supporting structure stiffness. Mech Mach Theory, 36(10), 1087-1103. DOI: 10.1016/S0094-114X(01)00044-1
  6. A. Daidie, Z. Chaib & A. Ghosn. (2008). 3D simplified finite elements analysis of load and contact angle in a slewing ball bearing. ASME J. Mech Des, 130(8), 082601. DOI:10.1115/1.2918915
  7. M. Duijvendijk. (2006). Benchmark of Bolted Bearing Connection Models in Wind Turbines. EWEC, (pp. 1- 7). Athens, Greece.
  8. X. H. Gao, X D Huang, H. Wang & J. Chen. (2011). Modelling of ball raceway contacts in a slewing bearing with nonlinear springs. Proc Inst Mech Eng Part C, 225(4), 827-831. DOI: 10.1177/09544062JMES2454
  9. J. Aguirrebeitia, . Plaza, M. Abasolo & J.Vallejo. (2014). Effect of the preload in the general static load-carrying capacity of four-contact-point slewing bearings for wind turbine generators: theoretical model and finite element calculations. Wind Energy, 17, 1605-1621. DOI: 10.1002/we.1656
  10. F. Schwack. (2016, Sept.). Free contact angles in pitch bearings and their impact on contact and stress conditions. Wind Eur. SUMMIT 2016, (pp. 27-29). Hamburg, Germany.
  11. S. J. Heo. (2020). A study on the FEA technique on the blade bearing of wind turbine. MS dissertation. Jungwon University, Seoul Korea.
  12. International Standard Organization. (2006). ISO 76 : Rolling bearings - Static load ratings.
  13. International Standard Organization. (2007). ISO 281 : Rolling bearings - Dynamic load ratings and rating life.
  14. L. Houpert. (1997). A Uniform Analytical Approach for Ball Bearing and Roller Bearing Calculations. ASME J. Tribol., 119(4), 851-858. Doi.org/10.1115/1.2833896
  15. N. D. Londhe. (2017). Extended Hertz Theory of Contact Mechanics for Case-Hardened Steels With Implications for Bearing Fatigue Life. ASME J. Tribol., 140(2), 021401 DOI: 10.1115/1.4037359