DOI QR코드

DOI QR Code

AGV Distance Learning Model Based on Virtual Simulation

가상 시뮬레이션 기반의 AGV 원격 교육 모델

  • Jin, Go-Whan (Department of IT Convergence, Woosong University)
  • Received : 2020.10.06
  • Accepted : 2020.11.20
  • Published : 2020.11.28

Abstract

The start of the Fourth Industrial Revolution has brought about various changes in the domestic industry in general, and smart factories have spread to companies in the fields of production, manufacturing and logistics, and they are using automation equipment. Especially in the field of logistics automation, AGVs are widely used, and most of them use the line guidance system, which is the traditional AGV drive system. In addition, the demand for AGV system developers, system operators and managers, and maintenance personnel is increasing, and the installation of systems for education is expensive and requires a large space to utilize. It is a situation where systematic education is difficult. In this paper, we propose a virtual simulation-based AGV distance education model for smooth practice of trainees. The proposed model consisted of a model that can drive the AGV by analyzing video information, instead of the line guidance method that is the conventional technology. As a result of self-diagnosis evaluation, it was confirmed that the experimental group through online education had an average satisfaction level of 0.65 higher than the control group using existing equipment, and that it could be used in an online education environment.

4차산업혁명의 시작은 국내 산업 전반에 다양한 변화를 가져오고 있으며, 생산 제조 및 물류 분야의 기업에 스마트 팩토리가 확산되면서, 자동화 설비를 사용하고 있다. 특히 물류 자동화 현장에서는 AGV가 널리 사용되고 있으며, 전통적인 AGV의 구동 방식인 라인 유도 방식의 사용이 대부분이다. 또한 AGV 시스템 개발자 및 시스템 운영자 및 관리자, 유지보수 인력의 수요도 증가하고 있는 추세이나, 교육을 위한 시스템의 설치에 고가의 비용이 소요되고, 넓은 공간을 필요로 하는 특성을 가지고 있어, 체계적인 교육이 어려운 상황이다. 본 논문에서는 교육생들의 원활한 실습을 위하여 가상 시뮬레이션 기반의 AGV 원격 교육 모델을 제안한다. 제안 모델은 기존 기술인 라인 유도 방식이 아닌 영상 정보를 분석하여 AGV를 구동할 수 있는 모델로 구성하였으며, 자가진단 평가 결과 기존 기자재를 활용한 통제 집단 보다 온라인 교육을 통한 실험 집단이 평균 0.65의 만족도가 상승하여, 온라인 교육 환경에서 활용할 수 있는 가능성을 확인하였다.

Keywords

References

  1. H. M. Lee & M. S. Kim. (2020). Case Study of Digital Contents for Online Education in College-Focused on Virtual Museum. Korean Journal of General Education, 14(4), 81-96. DOI : 10.46392/kjge.2020.14.4.81
  2. J. W. Do. (2020). An Investigation of Design Constraints in the Process of Converting Face-to-face course into Online Course. Journal of Education & Culture, 26(2), 153-173. DOI : 10.24159/joec.2020.26.2.153
  3. M. E. Kim, M. J. Kim, Y. I. Oh & S. Y. Jung. (2020). The Effect of Online Substitution Class Cuased by Coronavirus(COVID-19) on the Learning Motivation, Instructor-Learner Interaction, and Class Satisfaction of Nursing Students. The Journal of Learner-Centered Curriculum and Instruction, 20(17), 519-541. DOI : 10.22251/jlcci.2020.20.17.519
  4. K. Chiasson, K. Terras & K. Smart. (2015). Faculty perceptions of moving a face-to-face course to online instruction. Journal of College Teaching & Learning (TLC), 12(3), 321-240.
  5. H. J. Lee, S. H. Im & S. M. Kang. (2019). Implications for Innovation in Higher Education from Minerva Schools. Journal of Lifelong Learning Society, 15(2), 59-84. DOI : 10.26857/JLLS.2019.5.15.2.59
  6. K. S. Hone & G. R El Said. (2016). "Exploring the factors affecting MOOC retention: a survey study", Computers & Education 98, 157-168. https://doi.org/10.1016/j.compedu.2016.03.016
  7. D. L. Han. (2020). Nursing Students' Perception of Virtual Reality(VR) and Needs Assessment for Virtual Reality Simulation in Mental Health Nursing. Journal of Digital Contents Society, 21(8), 1481-1487. DOI : 10.9728/dcs.2020.21.8.1481
  8. Y. J. Kim, W. J. Kim & H. Y. Min. (2020). Nursing students' experiences in virtual simulation practice. The Journal of Korean Academic Society of Nursing Education, 26(2), 198-207. DOI : 10.5977/jkasne.2020.26.2.198
  9. J. B. Cooper & V. R. Taqueti. (2004). A brief history of the development of mannequin simulators for clinical education and training. Quality & Safety in Health Care, 13(1), 11-18. DOI : 10.1136/qshc.2004.009886
  10. J. W. Lee, J. Y. Han, D. K. Na, K. N. (2017). Development of Supportive Device Design for Artificial Hand Based on Virtual Simulation. Journal of Digital Convergence, 15(10), 455-465. DOI : 10.14400/JDC.2017.15.10.455
  11. L. A Dieker, J. A. Rodriguez, B. Lignugaris/ Kraft, M. C. Hynes & C. E. Hughes. (2014). The potential of simulated environments in teacher education: Current and future possibilities. Teacher Education and Special Education, 37(1), 21-33. DOI : 10.1177/0888406413512683
  12. M. G. Kim, J. Y. Jung, Y. R. Han, S. U. Park & J. S. Kim. (2017). An Analysis and Industrial Classification of Modeling and Simulation Service Industry. Journal of the Korea Academia-Industrial cooperation Society, 18(3), 185-198. DOI : 10.5762/KAIS.2017.18.3.185
  13. K. H. Kim, A. R. Shin & J. H. Ryu. (2020). The Effects of Computer-Based Teaching Simulation for Pre-service Teachers: a meta-analysis, Teacher Education Research, 59(3), 429-444. DOI : 10.15812/ter.59.3.202010.429
  14. N. U. Bautista & W. J. Boone. (2015). Exploring the impact of TeachMETM lab virtual classroom teaching simulation on early childhood education majors' self-efficacy beliefs. Journal of Science Teacher Education, 26(3), 237-262. DOI : 10.1007/s10972-014-9418-8
  15. G. Zhou, J. Yuan, I. L. Yen & F Bastani. (2016). Robust real-time UAV based power line detection and tracking. In 2016 IEEE International Conference on Image Processing (ICIP), IEEE, 744-748. DOI : 10.1109/ICIP.2016.7532456
  16. M. Lv, T. Gao & N. Zhang. (2016). Research of AGV scheduling and path planning of automatic transport system. International Journal of Control and Automation, 9(4), 1-10. https://doi.org/10.14257/ijca.2016.9.8.01
  17. Y. Yang, M. Zhong, Y. Dessouky & O. Postolache. (2018). An integrated scheduling method for AGV routing in automated container terminals. Computers & Industrial Engineering, 126, 482-493. DOI : 10.1016/j.cie.2018.10.007
  18. D. Wu, Y. Meng, K. Zhan & F. Ma. (2018, November). A lidar slam based on point-line features for underground mining vehicle. In 2018 Chinese Automation Congress (CAC), IEEE, 2879-2883. DOI : 10.1109/CAC.2018.8623075