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Abstract. In [1], there are some mistakes in calculations and solutions

of differential equations and theorems that appeared in the paper. We
here provide correct solutions and theorems.

4. Translation surfaces satisfying ∆Ixi = λixi

In this section, we classify the translation surfaces M of Type 2 in I13, that
is the surface

(4.1) x = (u, f(u) + g(v), v)

satisfying the equation

(4.2) ∆Ixi = λixi,

where λi ∈ R, i = 1, 2, 3. The coefficients of the first and second fundamental
forms are

(4.3) E = 1 + f ′
2

, F = f ′g′, G = g′
2

,

(4.4) L = −f
′′

g′
, M = 0, N = −g

′′

g′
,

respectively. The Gaussian curvature K and the mean curvature H are

(4.5) K =
f ′′(u)g′′(v)

g′4(v)
, H = −

g′
2

(v)f ′′(u) +
(

1 + f ′
2

(u)
)
g′′(v)

2g′3(v)
,

respectively.
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By straightforward computations, the Laplacian operator on M with the
help of (4.2) and (4.3) turns out to be

(4.6) ∆Ix =
(
∆Ix1,∆

Ix2,∆
Ix3

)
=

0, 0,
g′

2

f ′′ +
(

1 + f ′
2
)
g′′

g′3

 .

Suppose that M satisfies (4.2). Then from (4.6), we have

(4.7)
g′

2

f ′′ +
(

1 + f ′
2
)
g′′

g′3
= λv,

where λ ∈ R. First of all, we assume that M satisfies the condition ∆Ix = 0. We
call a surface satisfying that condition a harmonic surface or isotropic minimal.
In this case, from (4.7), we get

(4.8) g′
2

f ′′ +
(

1 + f ′
2
)
g′′ = 0.

The above equation can be written in the form:

f ′′

1 + f ′2
= p = − g

′′

g′2
, p ∈ R.

If p ∈ R\{0}, then we get

(4.9)

f(u) = c1 −
ln |cos (pu− c2)|

p
,

g(v) = c3 +
ln |pv − c4|

p
,

where ci ∈ R. In this case, M is parametrized by

(4.10) x(u, v) =

(
u,

(
c1 −

ln |cos (pu− c2)|
p

)
+

(
c3 +

ln |pv − c4|
p

)
, v

)
.

Therefore upto a translation and dilation of I13, (4.10) can be written as

x(u, v) =
(
u, ln

∣∣∣ v

cosu

∣∣∣ , v) .
The above is an isotropic Schrek’s surface given by

(4.11) x(u, v) =
(
u, ln

v

cosu
, v
)
.

The above equation is transformed into z = ey cosx or in the parametric form

(4.12) x(u, v) = (u, v, ev cosu).

The graph of (4.11) is contained in the image of (4.12), but they are not the
same. The image of (4.11) is not connected while the graph of (4.12) is con-
nected.
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Now, if p = 0, we have from (4.10)

(4.13)
f(u) = c1u+ c2,

g(v) = c3v + c4,

where ci ∈ R. Again by the translation and dilation of I13, we can write the
parametrization of M as

(4.14) x(u, v) = (u, u+ v, v) .

Theorem 4.1. Let M be a translation surface of Type 2 given by (4.1) in I13. If
M is harmonic, then it is congruent to an open part of the surfaces in (4.11),
(4.12) or an isotropic plane.

If λ 6= 0, from (4.7), we have

(4.15) g′
2

f ′′ +
(

1 + f ′
2
)
g′′ − λvg′

3

= 0.

According to the choices of f and g, we discuss the following three cases:
Case 1: An obvious solution for (4.15) is g being constant for an arbitrary

choice of f , but this contradicts to (4.4).
Now, supposing f = c, c ∈ R \ {0}.
Subcase 1.1: For λ > 0, from (4.15), we obtain

g(v) = ± 1√
λ

tan−1

( √
λv√

−λv2 − 2c1

)
+ c2,

where c1, c2 ∈ R. Suppose |v| <
√
−2c/λ, the surface can be parameterized as

x(u, v) =

(
u,

(
c± 1√

λ
tan−1

( √
λv√

−λv2 − 2c1

)
+ c2

)
, v

)
, |v| <

√
−2c/λ.

Subcase 1.2: For λ < 0, i.e., λ = −λ̃, where λ̃ > 0. From (4.15), we obtain

g(v) = c2 ±
1√
λ̃

log

[
λ̃v +

√
λ̃

√
λ̃v2 − 2c1

]
,

where c1, c2 ∈ R
Subcase 1.2.1: Suppose c1 < 0, then M can be parameterized as

x(u, v) =

(
u,

(
c+ c2 ±

1√
λ̃

log

[
λ̃v +

√
λ̃

√
λ̃v2 − 2c1

])
, v

)
, c1 < 0.

Subcase 1.2.1: Suppose c1 < 0, then M can be parameterized as

x(u, v)=

(
u,

(
c+ c2 ±

1√
λ̃

log

[
λ̃v +

√
λ̃

√
λ̃v2 − 2c1

])
, v

)
, |v| >

√
2c1/λ̃1.

Case 2: Suppose g(v) is linear, i.e., g(v) = c1v + c2, where c1 ∈ R \ {0},
c2 ∈ R. From (4.15), we obtain

f ′′ = vλc1.
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The above differential equation has a solution only for λ = 0, which is a con-
tradiction to our assumption λ 6= 0.

Now supposing f(u) is linear, i.e., f(u) = c1u + c2, where c1 ∈ R \ {0},
c2 ∈ R.

Subcase 2.1: For λ > 0, from (4.15), we obtain

g(v) = c5 ±
1√
λ

√
−1− c21 log

[
vλ+

√
λ
√
v2λ+ 2c3 + 2c21c4

]
,

where ci ∈ R, i ∈ {3, 4, 5}. The above found g(v) is again a complex-valued
function giving rise to a contradiction.

Subcase 2.2: For λ < 0, i.e., λ = −λ̃, where λ̃ > 0. From (4.15), we obtain

g(v) = c5 ±
1√
λ̃

√
1 + c21 log

[
vλ̃+

√
λ̃

√
v2λ̃− 2c3 − 2c21c4

]
, v2λ̃− 2c3 − 2c21c4 ≥ 0,

where ci ∈ R, i ∈ {3, 4, 5}. In this case, M is parametrized by

x(u, v) =

(
u,

(
(c1u+ c2) +

(
c5 ±

1√
λ̃

√
1 + c21 log

[
vλ̃+

√
λ̃

√
v2λ̃− 2c3 − 2c21c4

]))
, v

)
,

where v2 > (2c3 + 2c21c4)/λ̃.
Case 3: f and g are both non-linear and f(u) is at least of C3 class.

Differentiating (4.15) with respect to u we get

(4.16) 2f ′f ′′g′′ + g′
2

f ′′′ = 0

which can be written as

(4.17)
2f ′f ′′

f ′′′
=
−g′2

g′′
= p,

where p ∈ R \ {0}. From (4.17), we obtain

(4.18)

{
f(u) = c1 − p ln

(
cos
(√

c2
p (u+ c3)

))
,

g(v) = c4 + p ln (v − pc5) ,

where ci ∈ R. Substituting (4.18) into (4.15), we get

pv(1− p2 + p2λ2) + p(−pc5 + p2c5) = 0.

Since {1, v} are linearly independent, we can write

p(1− p2 + p2λ2) = 0, and p(−pc5 + p2c5) = 0.

This implies

p =

{
0,

1±
√

1− 4λ

2λ

}
and p = {0, 1}.

The only common solution from above relations is p = 0, which eventually
gives rise to contradiction from (4.18) to our assumption that f and g are both
non-linear.
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In particular, if p = 1, we have

1±
√

1− 4λ

2λ
= 1

implying λ = 0, which is again a contradiction to our assumption that λ 6= 0.
So, there is no solution. Hence we can state the following:

Theorem 4.2. Let M be a translation surface of Type 2 given by (4.1) in the
three dimensional simply isotropic space I13. Then, M is congruent to an open
part of the following:

(1)

x(u, v) =

(
u,

(
c± 1√

λ
tan−1

( √
λv√

−λv2 − 2c1

)
+ c2

)
, v

)
, |v| <

√
−2c/λ.

(2)

x(u, v) =

(
u,

(
c+ c2 ±

1√
λ̃

log

[
λ̃v +

√
λ̃

√
λ̃v2 − 2c1

])
, v

)
, c1 < 0.

(3)

x(u, v)=

(
u,

(
c+ c2 ±

1√
λ̃

log

[
λ̃v +

√
λ̃

√
λ̃v2 − 2c1

])
, v

)
, |v| >

√
2c1/λ̃1.

(4)

x(u, v) =

(
u,

(
(c1u+ c2) +

(
c5 ±

1√
λ̃

√
1 + c21 log

[
vλ̃+

√
λ̃

√
v2λ̃− 2c3 − 2c21c4

]))
, v

)
,

v2 > (2c3 + 2c21c4)/λ̃.

5. Translation surfaces of Type 2 satisfying ∆IIxi = λixi

In this section, we classify the translation surfaces of Type 2 with non-
degenerate second fundamental form in I13, that is, the surfaces of the form
(4.1) satisfy the equation

(5.1) ∆IIxi = λixi,

where λi ∈ R, i = 1, 2, 3. By straightforward computations, we see that the
expression in (5.1) turns out to be
(5.2)

∆IIx =
(
∆IIx1,∆

IIx2,∆
IIx3

)
=

(
−g
′f ′′′

2f ′′2
,
g′

2

(
4− f ′f ′′′

f ′′2
− g′g′′′

g′′2

)
,−g

′g′′′

2g′′2

)
.

The equation (4.1) by means of (5.1) gives rise to the following system of
ordinary differential equations

(5.3) − g′f ′′′

2f ′′2
= λ1u,
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(5.4)
g′

2

(
4− f ′f ′′′

f ′′2
− g′g′′′

g′′2

)
= λ2 (f(u) + g(v)) ,

(5.5) − g′g′′′

2g′′2
= λ3v,

where λi ∈ R. On combining equations (5.3), (5.4) and (5.5), we can write:

(5.6) (2 + λ3v) g′ − λ2g = p = −λ1uf ′ + λ2f,

where p ∈ R \ {0}. We discuss eight cases according to constants λ1, λ2, λ3. We
have summarized the solutions of ordinary differential equation in (5.6) in the
following table.

Cases (λ1, λ2, λ3) f(u) g(v)
1 (λ1 = 0, λ2 = 0, λ3 = 0) f(u) c2

2 (λ1 = 0, λ2 6= 0, λ3 = 0) p
λ2

c2e
λ2
2 v − p

λ2

3 (λ1 = 0, λ2 = 0, λ3 6= 0) f(u) c2

4 (λ1 = 0, λ2 6= 0, λ3 6= 0) p
λ2

c2 |2 + λ3v|
λ2
λ3 − p

λ2

5 (λ1 6= 0, λ2 = 0, λ3 = 0) c1 − p ln(|u|)
λ1

c2 + p
2v

6 (λ1 6= 0, λ2 6= 0, λ3 = 0) p
λ2

+ c1 |u|
λ2
λ1 c2e

λ2
2 v − p

λ2

7 (λ1 6= 0, λ2 = 0, λ3 6= 0) c1 − p ln(|u|)
λ1

c2 + p ln|2+λ3v|
λ3

8 (λ1 6= 0, λ2 6= 0, λ3 6= 0) c1 |u|
λ2
λ1 + p

λ2
c2 |2 + λ3v|

λ2
λ3 − p

λ2

In the cases 1 and 3, f(u) can be any differentiable function. In the cases 1, 2,
3, 4 and 5 we have L = 0 or N = 0. So the second fundamental form in these
cases is degenerate, that contradicts the assumption. In the cases 6, 7 and 8
substituting the f and g into (5.3), (5.4) and (5.5), respectively, we can easily
see that they do not satisfy these equations, where p, ci ∈ R.

Definition. A surface in the three dimensional simply isotropic space is said
to be II-harmonic if it satisfies the condition ∆IIx = 0.

Theorem 5.1. There is no translation surface of Type 2 in I13 satisfying
∆IIxi = λixi for any real number λi, (i ∈ {1, 2, 3}).

6. Translation surfaces of Type 2 satisfying ∆IIIxi = λixi

In the original paper [1], the Laplacian operator ∆III of the third funda-
mental form is not correct. The third fundamental form and the Laplacian
operator ∆III with respect to the non-degenerate third fundamental form III
on M in simply isotropic 3-space are defined by

(6.1) III = Xdu2 + 2Y dudv + Zdv2
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and

∆IIIx = − 1√
|XZ − Y 2|

(
∂u

(
Zxu − Y xv√
|XZ − Y 2|

)
− ∂v

(
Y xu −Xxv√
|XZ − Y 2|

))

= − 1

(LN −M2)
√
EG− F 2

 ∂u

(
Zxu−Y xv

(LN−M2)
√
EG−F 2

)
−∂v

(
Y xu−Xxv

(LN−M2)
√
EG−F 2

)  ,

where

X = EM2 − 2FLM +GL2,

Y = EMN − FLN +GLM − FM2,

Z = GM2 − 2FNM + EN2,

respectively. In fact, the third fundamental form III is expressed in terms of
the first fundamental form I and the second fundamental form II in simply
isotropic 3-space, that is,

III− 2H II + K I = 0,

where K and H are the Gaussian curvature and the mean curvature, respec-
tively. Now following the similar type of steps as in Section 4 and Section 5,
we can easily find out:

∆IIIx =
(
∆IIIx1,∆

IIIx2,∆
IIIx3

)
or

(6.2) ∆IIIx =


− 2f ′

f ′′ +

(
1+f ′2

)
f ′′′

f ′′3 ,

− 1+3f ′2

f ′′ +
f ′f ′′′

(
1+f ′2

)
f ′′3 +

g′
2
(
−3g′′

2
+g′g′′′

)
g′′3

,

g′
(
−2g′′

2
+g′g′′′

)
g′′3

 .

Hence the equation ∆IIIxi = λixi gives rise to the following system of differ-
ential equations

(6.3) − 2f ′

f ′′
+

(
1 + f ′

2
)
f ′′′

f ′′3
= λ1u,

(6.4) − 1 + 3f ′
2

f ′′
+
f ′f ′′′

(
1 + f ′

2
)

f ′′3
+
g′

2
(
−3g′′

2

+ g′g′′′
)

g′′3
= λ2 (f + g) ,

(6.5)
g′
(
−2g′′

2

+ g′g′′′
)

g′′3
= λ3v,

where λ1, λ2, λ3 ∈ R. We claim that if λi 6= 0 for some i = 1, 2, 3, then there
do not exist f = f(u) and g = g(v) which satisfy the system (6.3), (6.4) and
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(6.5). To see this, we first observe that by combining (6.3), (6.4) and (6.5), we
get

(6.6)

(
λ2f − λ1uf ′ +

1 + f ′
2

f ′′

)
+

(
g′

2

g′′
− λ3vg′ + λ2g

)
= 0.

Differentiating (6.6) with respect to u, we get

(6.7) λ2(f ′ + uf ′′)− (2 + λ2)f ′ +
(1 + f ′

2
)f ′′′

f ′′2
= 0.

On the other hand, from (6.3) we obtain

(6.8) f ′′′ =
f ′′

2
(2f ′ + λ1uf

′′)

1 + f ′2
.

By combining (6.7) and (6.8), we obtain

(6.9) λ1(f ′ + 2uf ′′)− λ2f ′ = 0.

Suppose now that λ1 6= 0. Then the solution of this is

(6.10) f =

{
c1 + c2

2λ1u
1
2
λ1+λ2
λ1

λ1+λ2
if λ1 6= 0 and λ1 + λ2 6= 0,

c3 + c4 lnu if λ1 6= 0 and λ1 + λ2 = 0.

However, this f does not satisfy (6.3).
Suppose λ1 = 0 and λ2 6= 0. Then (6.9) implies that f ′ = 0. But this

contradicts the fact that f ′′ = 0.
Now suppose that λ1 = λ2 = 0 and λ3 6= 0.
Differentiating (6.6) with respect to v, we get

(6.11) 2g′ − g′
2
g′′′

g′′2
− λ3(g′ + vg′′) = 0.

On the other hand, from (6.5) we see that

(6.12) g′′′ =
g′′

2
(2g′ + λ3vg

′′)

g′2
.

By combining (6.11) and (6.12), we obtain

2vg′′ + g′ = 0,

whose solution is

g = c5 + 2c6
√
v.

If λ3 6= −2, this g does not satisfy (6.5). If λ2 = −2, this g satisfies (6.5),
but we can see there is no f which satisfies (6.3), (6.4) as follows. Equation
(6.4) implies

(1 + f ′
2
)f ′′′

f ′′3
=

1 + 3f ′
2

f ′f ′′
.
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Plugging this into (6.3) gives

1 + f ′
2

= 0

which has no solution.
Combining all the above cases, we can see that the claim holds.
Now suppose that M is III-harmonic, i.e., λ1 = λ2 = λ3 = 0. Then from

(6.6), we get

(6.13) − 1

f ′′
− f ′

2

f ′′
=
g′

2

g′′
.

Therefore for some p ∈ R, we obtain

(6.14) −

(
1

f ′′
+
f ′

2

f ′′

)
=
g′

2

g′′
= p.

Note that if p = 0, then there is no f satisfying (6.14). So suppose p 6= 0, we
have

(6.15) f(u) = c1 + p ln

∣∣∣∣cos

(
pc2 − u

p

)∣∣∣∣ , g(v) = c3 − p ln |v + pc4| ,

where ci ∈ R. The solution of (6.15) satisfies the equations (6.3), (6.4) and
(6.5). In this case M is parametrized by

(6.16) x(u, v) =

(
u,

(
c1 + p ln

∣∣∣∣cos

(
pc2 − u

p

)∣∣∣∣)+ (c3 − p ln |v + pc4|) , v
)
.

Therefore for v > 0 and upto a translation and dilation of I13, (6.16) is a Scherk
surfaces of the form

x(u, v) =
(
u, ln

v

cosu
, v
)
.

Thus on summarizing all the above cases, we can state the following result.

Theorem 6.1. The only translation surface of Type 2 satisfying the condition
∆IIIxi = λixi in I13 is the isotropic Scherk’s surface parametrized by

x(u, v) =
(
u, ln

v

cosu
, v
)
.
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