Bull. Korean Math. Soc. 57 (2020), No. 6, pp. 1393-1408
https://doi.org/10.4134/BKMS.b191054
pISSN: 1015-8634 / eISSN: 2234-3016

GEVREY REGULARITY AND TIME DECAY OF
THE FRACTIONAL DEBYE-HUCKEL SYSTEM IN
FOURIER-BESOV SPACES

YIWEN CuUl AND WEILIANG XIAO

ABSTRACT. In this paper we mainly study existence and regularity of mild
solutions to the parabolic-elliptic system of drift-diffusion type with small
initial data in Fourier-Besov spaces. To be more detailed, we will explain
that global-in-time mild solutions are well-posed and Gevrey regular by
means of multilinear singular integrals and Fourier localization argument.
Furthermore, we can get time decay rate estimate of mild solutions in
Fourier-Besov spaces.

1. Introduction

In this paper, we study existence and regularity of mild solutions for the
initial value problem of the following drift-diffusion system arising from the
theory of electrolytes:

Ov+ (—A)v = -V - (vVe) in R™ x (0,00),
Ohw + (—A)Pw =V - (wVe) in R™ x (0,00),

v—w in R™ x (0, 00),
v(z,0) = vo(x), w(xz,0) = wo(x) in R,

(1)

where v = v(z,t) and w = w(x,t) denote densities of the electron and the hole
in electrolytes, ¢ = ¢(z,t) denotes the electric potential, vo(z) and wy(x) are
initial datum. Note that in this paper we assume that n > 1.

The system (1) can be rewritten as the differential-integral Fokker-Planck
system through the famous Duhamel principle:

@) v = ety — fot e~ =27 L [V (—=A) H(w — v)] ds,
w=e A g 4 [Te =AY L WV (—A) T (w - )] ds,
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1394 Y. CUI AND W. XIAO

where e~(=8)" = F=1(¢=tl*" F) is the heat flow operator, F is the Fourier
transform and F~! is the inverse Fourier transform. Any solution that satisfies
system (2) is called a mild solution of the system (1).

It should be noted that the system (1) is scaling invariant, which means that
if (v,w) solves (1) with initial data (vg, wp), so does (vy,wy) with initial data
(vox, woy), where

(va(z, 1), wr(z,1)) = (APo(z, A2Pt), APw(\z, A2Pt)),
(vox (), wor(z)) == (A\Pvo(Ax), APwo(Ax)).

In the long run, our seniors have done a lot of profound researches on the sys-
tem (1) in many ways, see [1,2,13,14,18,20]. Mathematical study of the system
(1) originated in 1980s, when attention was mainly focused on boundary values
problems and scholars obtained some results related to global existence, unique-
ness of classical solutions and asymptotic stability of stationary solutions, see
[8,9,17,19]. After the 1990s, some scholars, such as Biler and Hebisch in [3],
began to study global and local existence of mild solutions. Subsequently, more
and more scholars carried out deep exploration and researches into it and its
related topic.

The first goal of this paper is to show existence of solutions of the system
(1). In the case of S = 2, some previous scholars have come to the following
results. Significantly, Karch in [10] solved the proof of existence and uniqueness
of solutions of the system (1) for initial data in the Besov spaces B;,Oo with the
condition of —1 < s < 0 and p = _f5. Kurokiba and Ogawa in [11] obtained
the same result in L? space. J. Zhao, Q. Liu and S. Cui in [22] proved that
solutions for the famous Debye-Hiickel system with low regularity initial data
in Besov spaces B;’T(R”) for -3 <s<-2+2 p= +12 exist. More similar
studies can be consulted in [15,16].

The second goal of this paper is to show analyticity of mild solutions to
the system (1) by means of Gevrey regularity. In 1989, Foias and Temam cre-
ated this method and used it for the first time to studying analyticity of the
Navier-Stokes equations with space periodicity boundary condition, see [6,7].
After that, many authors have fully exploited the advantages and potential of
this method, and extended it to various functional spaces and equations. For
example, Andrew B. Ferrari and Edriss S. Titi in [5] studied the regularity
of solutions to a large class of analytic nonlinear parabolic equations on the
two-dimensional sphere, I. Chueshov and M. Polat in [4] studied the Gevrey
regularity of the global attractor of the dynamical system generated by the gen-
eralized Benjamin-Bona-Mahony equation with periodic boundary conditions.
Recently, J. Zhao further proved that global-in-time mild solutions to system
(1) are Gevrey regular for all 1 < p < 2n and 1 < r < oo, see [21].

After introducing the work done by our predecessors, let’s make a summary
of what this paper is going to prove. Now we will present the first two results




THE FRACTIONAL DEBYE-HUCKEL SYSTEM 1395

of this paper, which can be used to explain existence of mild solutions and
Gevrey regularity of the mild solution obtained in the first result.

Theorem 1.1. Let p > 25"1, p + o =1,1<r < oo, and let (vo,wo) €
2Bt _
FBp, " (R"). When + < B <3+ rmn{ 7,5}, there exists a constant € > 0

such that if || (vo, wo)l| . —2s+ 2 S e, then the system (1) admits a global-in-time
FB,.,
mild solution (v, w) € X, ,, where

Xy, = L°(0,00 FB, 2 T (R")) (L1(0, 005 FBY, (R™)).
~20+
7 (R™).

Theorem 1.2. Under the assumptions of Theorem 1.1, the global-in-time mild
solution (v, w) € X, , obtained in Theorem 1.1 satisfies

Moreover, if r < co, we have (v,w) € C([0, 00), FB

(@D ey e g,

2
where e!(~2)2 = f‘l(et‘f‘ﬂ}').

In Theorem 1.2, we have proved analyticity of mild solutions, so that we can
further obtain the time decay estimates of mild solutions.

Theorem 1.3. Under the assumptions of Theorem 1.1, for any o > 0, the
B B

global-in-time mild solution (v,w) € X, and (eV1=2) 2y VI=2)2 ) e X,

achieved from Theorem 1.2 satisfies the following time decay estimate:

1(A%w(2), Aw(®))I| oy S Ooals | (vo, wo)| -2as2,

p,T
where Cg » is a constant depended on  and o .

The overall structure of the article is as follows: In Section 2, we review the
Littlewood-Paley dyadic decomposition theory and the definition of Fourier-
Besov spaces. In Section 3 and Section 4, we prove Theorem 1.1 and Theorem
1.2 respectively by the standard fixed point argument. In Section 4, we prove
Theorem 1.3.

2. Preliminaries

First of all, let’s introduce some of the notations mentioned in the paper.
For two constants A and B, if there is a finite constant C' whose value of each
line may vary such that A < CB, we denote it as A < B. For a quasi-Banach
space X and for any 0 < T" < oo, we use standard notation LP(0,7T;X) to
denote the quasi-Banach space of Bochner measurable functions f from (0,7)
to X endowed with the norm

171125 {fo 7¢I a7 if1<p < oo,

SUPp<i<T IfCt)llx  if p=oo.
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Especially, if T' = oo, we still use [|f|[zz x rather than | f[/zz x. Given two
quasi-Banach spaces X and Y, the product of these two spaces, X x Y, will
be endowed with the usual norm ||(u,v)|| := ||ul|x + ||v]ly. If X =Y, we use
[(w,v)||x instead of ||(u,v)||xxx. Now we introduce some basic knowledge on
Littlewood-Paley theory and Fourier-Besov spaces.

Let ¢ € C°(R™) be a radial positive function such that

3 8 »
supp p C{EER™: T <[E[ <2} D p(277€) =1 for any £ #0.
JjEZ

We denote by F the Fourier transform and F~! the inverse Fourier trans-
form. Define the frequency localization operators as follows:

Aju = pj(D)u = F*Icpj(g)}'u; Siu=1;(D)u = Fﬁle(é)]:u,

here ¢, (§) = ©(277¢) and ¥; = Zkgj—l ;-
By Bony’s decomposition we can split the product uv into three parts:

wo = Tyv + Tyu + R(u,v),
with
T,v= ZSj_luAjv, R(u,v) = ZAjuﬁjv, Ajo=20_ 1w+ Aju+Aj, 0.
J J
Let us now define the Fourier-Besov spaces as follows.

Definition 2.1. For s € R, p,r € [1, 0], we define the Fourier-Besov space
FBj, as

. o~ 1/r
FB;, = {f € 7'/ |fllpsy, = (2715 FI) < ool

Jez
Here the norm changes normally when p = oo or r = oo, and P is the set of all
polynomials.

Definition 2.2. For 0 < T < o0, s € R, 1 < p,r,p < oo, we set (with the
usual convention if r = c0)

1
-

= (ZQJSTHAijLp(o,T;LP)) :

j€Z

1 lz0 (s

s
p

We then define the space L?(0, T FB;T(R")) as the set of temperate distri-
butions f over (0,7 x R™ such that lim; ,_ S;f =01in S'((0,T) x R™) and
||f||Z;(Ff3;,T) < o0.

Lemma 2.3. Let f be a smooth function on R™\ {0} which is homogeneous of
degree m. The operator f(D) is continuous from FB;T(R") to FB;;m(R”).
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Proof. Set u € FB;’T(R”). Then

) — 1/
1A DYl gy = (302~ 1A FD)ully )

JEz

, 1/r
= (2 s @ £l

jez

= (Z2“5*’”)’||soj<s>|s|mf<s/\f|>a||zp)”’"

JEL
. ) 1/r
< (Yo gyl )
JEZ

= CHU’HFB;’T(]R")' O

Proposition 2.4 ([12]). Let X be a Banach space with norm || - ||x, and
B: X x X — X be a bilinear bounded operator. Assume that for any uy,us €
X, we have ||B(uy,uz)||x < Collur||x||uzllx. Then for any y € X such that
lyllx <e< ﬁ, the equation u = y+ B(u,u) has a solution u in X. Moreover,
this solution is the only one such that ||u|lx < 2e, and depends continuously
on y in the following sense: if |y||x < e,u=y+ B(u,u) and ||u||x < 2e, then
lu =l < = ly — Fllx-

3. Existence of solutions

In this section we will prove Theorem 1.1. We have learned from Section 1
that the integral form of the system (1) is as follows

@ =T f e ICATY Y)W - v ds,
w = e =2 0 + J;f e~ =2y L (v (=A) " Hw — v)] ds.

.28+
Lemma 3.1. Let vy € FBP7T.B+" forp > 25: and 1 <r < +oo. Then there

(AP —(—A)?
holds e=(=2)"tvy € X, and |le= "2 Mg |x, . S Hv0||Fszzs+ﬁ-
por

Proof. Firstly, we need to prove that

o - .
(30 27 Ay (=D ) [ 1) S ol —ame
< FBp,r

In fact,

18 (e~ g) | 2o = [l@je 3 () 1o S B0 ()l s

(4) 18 (e~ =2 )| e o S 1 Azvoll -
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n

Then multiplying (4) by 27297 and taking ["-norm, we get what we want.
Secondly, we need to prove that

o . N
O 27 A (e~ wg) [T )™ S llvoll  —ssen, .
= FBy,r

AN 4928 ~
Due to [|A;(e= 2 )|, < e [lo;00(E)| 10

— T )
_492Bj ~
6) 18T )l 5 [ e Lol

1— e T2 28]
= Wnsﬁjvo(f)”m S 27 les00(E)l o

Similarly, multiplying (5) by 27 and taking ["-norm, we acquire the results
described in the lemma. ]

Lemma 3.2. Let v,w € X,, and A¢p = w —v. Thus ||%(U,¢)||Xp .S
) ,
I )l -

Proof. For convenience, we use %(v, ¢) to represent the nonliner term, that is

¢ 8
PB(v, P) :/0 et =A)Tg L (0 ) ds.

Applying A; to #(v,¢), then doing Fourier transform on it and taking the
LP-norm, by using Minkowski’s inequality, we find that

—_— t —_—
182 (v, )l 5/ 186~ =RV (V)| , ds
0

t o P
< / e~ =2 90 | A [0V )|, ds.
0

According to Bony’s paraproduct decomposition, we find that

wWo =D S vApVe+ > AjuSyVo+ > AjuA;Ve.

Jj'€Z j'ez j'ez

Then we have

— t 285 -
18006, 5 [ eI DNFQR, S (Sym108, V) 1 ds
0

j'ez
t P

+/ e~ =92 9d | F (A, Z (AjivSj -1V )| e ds
0 jez
t P N

+/ I F(A; Y (8jvA; V)| ds
0 ez

= Il +IQ+I3
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Based on the properties of support sets, we have

t o
L< / =291 N F(A(Sj- 108, V)|, ds.

0 l—3"|<4
As for the term || F(A;(Sj—1vA;V®))|,,, applying Holder’s inequality and
Young’s inequality,

> IIFA(Sy—10A V)

li—i"1<4

= 3 ey (Sy—10) * (A V)l

li—g"1<4

SIS ) (A,

li—3'1<4

—_— —_—
o 1Sl - 18V,
j—3'1<4

kn  —— —
Z Z 27 HAI@U”LP : ||Aj'v¢||[,p

li—3"|<4 k<G =2

DDA D D S Rl T P LA P
li—3"1<4 k<j' =2

A

N

A

In conclusion,

t . v n
s [ty Y
0 li—3'<4
o Z 22,@/c2k(72/3+ﬁ)”mnmgﬂ"(l*ﬁ)nmum] ds.
k<) —2

We can estimate I5 in the same way:

t
(1—)228 = - —28+ ) | Ao
IS /O[e T 3 Byl Yo 2RI AN ) ds.

li—3"1<4 k<j’'—2

Next, it’s clear that there exists a constant Ny such that

t o —
B [l 2 S A (0 V) ) ds
0 i'>j=No

We divide the estimate of the term ||Aj(Aj/v27V¢)||Lp into two steps. When
1 < p <2, utilizing Hélder’s inequality and Young’s inequality, one has

ST IFA AV

J'23—No

= Y gy (B0) * (25 VH)

Jj’'23—No
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g —— _
S Y 2B+ AV
J'2j—No L
T _
S Y 270850l 18Vl
J'2j—No
oy i1(28—1—22) 5 (=284 ) A (14 2) Ao
<2 N 2l COTIT R | K|, 27 T A Vgl

Jj'2j—No

When p > 2, we can still come to a similar conclusion that

3 s (B50) % (A V),

Jj'’2j—No
njg _
S 27 (A0) < (A Vel e
Jj'2j—No
nj — —_
S22 > Al 18Vl L,
j'23—No
L ST S CAT Al v T TN 2
3'23—No
< 2M0mw) S i Cemtemgl D Ko o7 O | AV,
j'235—No
Therefore,
‘ i 6] = U n -/ n
135/ [e—(t—s)Qzﬁqu(Hp—/) Z 9 (2,3—1_%)2] (—28+2)
0 Jj'2j—No

— (1 n _
185002 )25V 8, | ds

t
+/ |:ef(tfs)22ﬁj2j(1+n7ﬁ) Z o (26—1-m) i (264 2)

0 §'2j—No

— (14 _
18011, 2" 185,90, | ds.
Taking the L norm of ||Aj§(?,¢)HLp in time, we can see that

6) 1A 20, §)ll oo v

j(26—2 i(I+2) A
SYCTINoll oy, AV

t P,
_— o
4270 P’)||V¢HZOOF31—2¢3+§2]”’ 1Azl s
t p,r
F(1+2) J(2B—1-2) 0 (14 2) A
+ 2l > 2 72T A VOl
t Py 3'>2j—No
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—_—
_7 j i’ I A,
4 9i(4n—2 IIUH~ wopp, T T oty (1+§/)||Aj,v¢||L%Lp
nr 25N

Multiplying (6) by 2].(72B+ﬁ), and taking ["-norm with index j, by using
Minkowski’s inequality and Young’s inequality, we can conclude that

EOr m—

p,T

< n n o
Shol__oneg IVOI oo #1961 sy ol

1 p ’
t p,T t pP,T t p,T L FB

Due to A¢p = w — v, quoting Lemma 2.3, we find that

n < (v, w n
Vol e SN0,
and
IVl iasva SN0l asea
t p,T £ p,r
Therefore we have
n < 2
(7) 1200, o S 10wl

When taking the L'-norm in time to |A;%(v,¢)||,,, we will obtain similar
results that

(8) 11820, )l 1
S2F Nl s 2BV 1y

t p,T

279" ||V¢||z§oF3172B+ﬁ yv “AjU”L%LP

P,
j(—28+1+2 28-1-22) 53 (14 5) | A o
oI (26+1+5 )||U||~ .72[“" Z 9 (2B-1=33)9j' (143 )||Aj’v¢“Lt1Lp
3'27—No
L LD DR Sl IV L PP
LyFB,, 7 J1ST—No ’

Multiplying (8) by 273" and taking ["-norm, we can get

© 2@l
t P

Sholl_ e VOl n + IV acaven ol s

LeFB,., LIFB, , LeFB,., LIFBY,

2
S w)ly, -
Through (5), (7) and (9), we can get
2
120, 0)x, , S (v w0)ll%,

Thus we have completed the proof of Lemma 3.2.



1402 Y. CUI AND W. XIAO

From the above results, we can prove Theorem 1.1 according to the fixed
point theorem. O

4. Gevrey regularity of mild solutions

8 8 8

Setting V (t) =eVi=2)2 y(8), W (t) =22 45(t), and (t) =eVI=2) % ¢(¢).
In addition, ®(t) = W(t) — V(¢), so (V(t),W(t)) satisfies the following integral
system:

V(t) = eVHD T8 g 1 VVRA)E —-9)(-8))
><V6\/‘;(*A)g (e*\/g(*A)% V(s)e’\/g(*mg V&(s))ds
W(t) = eVIA)E =007 o [ (Vi VR)(8) F (=) (=8)7]
xVe\/g(_A)g (e_\/g(_A)% W(s)e_\/g(_A)g V&(s)) ds.
Significantly, in this section Z(V, ®) represents new nonlinear terms, that is
AV, ®)

(10)

t
- / VIR (=) F == (=) 1 g VA2 F (=VE-8)F () o~VE-2)F T (s)) ds.
0

.28+
Lemma 4.1. Let vy € FBp)T'B+P forp > 272£1 and 1 <r < +oo. Then there
8 8
holds eVH(=2)2 7t(7A)ﬁUo EXpr and ||6\/E(7A) : 7t(7A)BU0HXp - S ol 20+ T
’ FB

b,

Proof. We first find

B
2 —

[ F(AeVI=2)2 —H=8)7, 0 VS =HE? 5 (€)

7
— B_1y21
(Vg - 3) +<111}0(§)

s = llpse
= lleje s
S lleivo )l e = I1A5voll -
s — . n
Hence | F(A;eV" 87— )1 < || K, multiplying by 2727
and taking ["-norm,

8 B
”e\/E(—A)‘z—t(—A) voll . —2srn Slvoll L —esem .
FBp,r © FBy, *

On the other hand,
_ ﬁ, _A)B B__t|¢#128 _t1el28
||.7:(Aje\/i( A)Z —t(—A) vo)ll = ||e\/ﬂ£\ 1€l o€ el G0 (E) s

_t)g28 ~ _928i—1 .
S lpse 2 G0 ) S e Hlei oo () o

Now taking L'-norm with respect on s over [0,7), multiplying 273 and then
taking {"-norm, one has
eVE=2)F —t(=2)"

n < n
UO”Z% Bgr ~ HUOHFB;?H?.
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From the above we can see that Lemma 4.1 holds. (]
Lemma 4.2. Let VW € &, and AP =W — V. Then

1BV, @)y, STV, -
Proof. We first have

t
8BV @), = [ F(el DD
0

v
[Ny

8
(11) VeVs(=4) V(s)e VEEAI2 VU d(s))) ds]| e

Due to the equation
(VI V3)(~A)% — (t — 5)(—A)°
= — (Vi—s+Vs—VI(-A) + (Vi s (-A)%

(t—s) (t—s)
a3 cay,

(e VA=)

we have

(12) Equation (11)

t t—s B B B
< ||/ e—#\slwg . ].'(Aje\/g(—A); (e—x/g(—A)g Ve—\/g(—A)[z V®))ds|| e
0

~

t ; 8 8 8
< / e (t=9)2 V| F(A;eV3=R)2 (V=R 2o VE(=R2) 2 ) | 1o ds.
0
Using Bony’s paraproduct decomposition, we can get

e VAR S VAR g 3 G CSER NV CESEINR 2

S
B B
+ Z e_ﬁ(_A) 2 Aije_ﬁ(_A) 2 Sj/,1V<I>
j'ez
B B
(13) + ) e VEEA A Ve VEERT A VS
J'€z

Substituting (13) into (12) and using the properties of support sets, we have

—

(14) 1A;2(V, @)l

t A
S/ef(tﬂ)f’”gj Z | F(AeV32)

0 =
l7—3'1<4

B
2

8
(emVs(=4)2 Siy

B
Ve VSR ALV®))|| Lo ds

t o 8 8
+/0 et T S F PN CSEI RV CSL IV

li—i"1<4
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el
Vervi-mEs, 95 ds
. .
—|—/ 6*(t75)221912j Z ||-7:(A eVs(=4) g( 7\[(7A)gAj/
0 3'2j—No
B ____
Ve Vi22 AT V)| Lo ds
=1 + I+ Is.

8 8 8
As for the term || F(AjeVs(=8)2 (eVs(=2)> G, Ve VE=2)2 AL V))||,,, ap-
plying Holder’s inequality and Young’s inequality, one has

B
S F@eVF N (VA g YRR AL ga))|L,
=’ <4
SIE18 Rl AT =
= D eyl (e VH S V() x e VR A V()]
li—3'<4
S1el8 SaleenB Sl o
D Zaa / e VI (S5 V) (€ = m)emVEIT (A Y ®) () di| o
li—j’1<4 "
S B_le_m|B_|n|B — = -
S D e ; eSS Ie=nm=nl) (S5 V) (€ = n)(A V@) (1) dn| -
li—j’|<4 "

Since eVs(€l”=le=nl"=Inl") g uniformly bounded when § € [0, 1],

the formula above

< || / V)€ — )] |(A V@) ()] dr
l7—J \<4

= S NS A V),
li—3'|<4

S S I ST kR K27 D | ALVl
lj—3'1<4 k<j' =2

In conclusion,
t i v n
L < / [e—(t—s)22592j Z 97 (=1-27)
0 li—3'|<4

E(—28+2) A 2 AN Ve
x>0 2RI A || 2 O A5 Vg, ds
k<g'=2

In the same way, we can get:

t
(t—$)2289 i — _ (1-284+ ) || A
LS /O[e G S Bgelly, 3 2RI AYG ) ds.

li—3"1<4 k<j' =2
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When it comes to I3, for the term

B B B ___
| F(AjeVsmR)2 (emVEER 2 AL Ve VA2 AL VD)) 1o,
we have
B B B ___
> IF(QeS A (e VRN Ve VIERE A V)| 1
j'23—No
118 Jale—nl® T eIl e
= > e / e~ VAT (AL V) (€ = p)e VI (A5 VD) (1) di| e
§'>j—No re
SEB —1n1B—le—nlB) 5 ~
= 3 ey [ eV RV € = ) (B V) ) il
§'>5—No Rn
< Y ey / (A V)(E —n)| - (A7 V@) ()| dipl| s
§'>j—No Rn
= > Neil@ V)] (A V)]l
j’>j—No

According to the results that have been proved in Section 3, we can get that
when 1 < p <2,

t
I < / [ef(tfs)22512]'(1+ﬁ) S eIy 20
0 §"2j=No
— ./ 1+ _
185002 )85,V 8) ] ds.
When p > 2,

t
I < / [67(t75)223-72j(1+”*ﬁ) S o7 CAmtomgl (22045
0 i'2j=No
— (142 _
18011, 2" 18596, | ds.

By the above derivation, we have

—

12;2(V,®)| v
t i -/ n n
5/ [e—(t—s)22532j Z 9J (=1=27) Z 22Bk2k(—2/3+?)
0 li—5'1<4 k<j'—2

o i) A T
| Bkl 2 A0, ds
t
I — - ~26+2) | A
[ [ty S &, Y 2 e 5T, ds
0

li—3"l<4 k<j’' =2

t
+ / |:€7(t75)22ﬁ‘7‘2]’(1+ﬁ Z 2j/(25*1*%)2j/(*25+ﬁ)
0 i'>5=No
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1+
18;0]1 2" A wuLp] ds
t
+/ [e—(t—sﬂw”'zj“*”—ﬁ) ST 97 @a ol (22645

0 J'23—No
— 1 S =
||Aj'”HLP2] s )|‘Aj/v¢||LP:| ds

Since the remaining proof part is exactly the same as that corresponding to
Section 3, we can already obtain the final result, that is,

1BV, @), SNV, -

Using the fixed point theorem again we can prove Theorem 1.2. (I

5. Time decay of mild solutions
From the contents of the previous two sections, we can prove Theorem 1.3.

Lemma 5.1. For any o > 0, the system (1.1) ewxists global-in-time mild solu-

8 8
tion (v,w) € Xy, and (eVI=2) 2y VI 2y € X, ... Actually, they satisfy
the following time decay estimate:

A7), A7) o < oot ™ )] s

p,r

where C3 , s a constant.

Proof. Tt’s worth noting that we just need to prove

DD s < Coot Flnll_ anes
por
because we can prove ||A%w ()|| N < Cpot ™28 ||wol| ~25+ 2 in the same
B,

way. According to the above two formulas the result descrlbed in the theorem
can be obtained immediately.

B8 B
IATO(@)]|  apin = [|ATe™VIERZVIERDZ4(1) |y
FBp, 7 FB,, P
. n B B
(2T F (A AT VIR VA ()1,
JjEZ
i(—28+%)r o — B EUNY | r o1
= (2T el I F (8 () )
Jj€Z

Suppose the function f(u) = ,u"e_\[” , where u > 0, o is a constant greater
than 0. As can be seen from the derivation of the function, f(u) < f((ﬁ)‘%) <

Cs ot 27 . Therefore,
D] snesy < Coot™ 5 (3 2 F (A o))

P Jj€z

1
=
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= Coot eV ™l|  ssi

P,

< Cpot™ Ffuol|—saiz-

P,
Thus we have proved Lemma 5.1. ]
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