References
- Abiteboul, S. (1997). Querying semi-structured data. InInternational Conference on Database Theory, Springer, Berlin, Heidelberg, pp. 1-18.
- An, M.G., Kim, M.J., and Kim, Y.S. (2019). "A BlockchainBased Risk Management for Overseas Construction Project Using Natural Language Processing." Proceedings of KICEM University Students Conference, pp. 116-119.
- Bilal, M., Oyedele, L.O., Qadir, J., Munir, K., Ajayi, S.O., Akinade, O.O., and Pasha, M. (2016). Big Data in the construction industry: A review of present status, opportunities and future trends. Advanced engineering informatics, 30(3), pp. 500-521. https://doi.org/10.1016/j.aei.2016.07.001
- Cambria, E., and White, B. (2014). Jumping NLP curves: A review of natural language processing research. IEEE Computational intelligence magazine, 9(2), pp. 48-57. https://doi.org/10.1109/MCI.2014.2307227
- Han, K.K., and Golparvar-Fard, M. (2017). Poten-tial of big visual data and building informationmodeling for construction performance analyt-ics: An exploratory study. Automation in Con-struction, 73, pp. 184-198. https://doi.org/10.1016/j.autcon.2016.11.004
- Kim, Y.R., Lee, S.H., and Park, S.H. (2012). "Development of Rule-Set Definition for Architectural Design Code Checking based on BIM." Korean Journal of Construction Engineering and Management, KICEM, 13(6) pp. 143-152. https://doi.org/10.6106/KJCEM.2012.13.6.143
- Lee, J.H. (2019). "Review on Natural Language Processing Reasearch Utilizing Unstructured Text Data in Construction Industry." Construction Engineering and Management, 20(2), pp. 62-66.
- Lee, S.K., Kim, K.R., and Yu, J.H. (2012). Automatic Inference of Standard BOQ (Bill of Quantities) Items using BIM and Ontology. Korean Journal of Construction Engineering and Management, 13. 10.6106/KJCEM.2012.13.3.099.
- Lalwani, M., Bagmar, N., and Parikh, S. (2014). "Efficient Algorithm for Auto Correction Using ngram Indexing." International Journal of Computer & Communication Technology (IJCCT), 3(3), pp. 23-27.
- McGuinness, D. L. (2004). OWL web ontology language overview. W3C recommendation. http://www.w3.org/TR/owl-features.
- Nadeau, D., & Sekine, S. (2007). A survey of named entity recognition and classification. Lingvisticae Investigationes, 30(1), 3-26. https://doi.org/10.1075/li.30.1.03nad
- Park, Y.S., Oh, C.D., Jeon, Y.S., and Park, C.S. (2008). "A Web-Based Construction Failure Information System using Case-Based Reasoning." Korean Journal of Construction Engineering and Management, KICEM, 9(6), pp. 257-267.
- Stone, M. (1974). Cross‐validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, Series B (Methodological), 36(2), pp. 111-133. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
- Williams, T.P., and Gong, J. (2014). "Predicting construction cost overrunsusing text mining, numerical data and ensemble classifiers." Automation in Construction, 43, pp. 23-29. https://doi.org/10.1016/j.autcon.2014.02.014
- Zhang, J., and El-Gohary, N.M. (2016). "Semantic nlp-based information extrac-tion from construction regulatory documents for automated compliancechecking." Journal of Computing in Civil Engineering, 30(2), 04015014. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000346
- Y.S. Kim. (2019). Automatic multi-label image classification model for construction site images (Unpublished doctoral dissertation). Graduate School, Seoul National University.
- Eunjeong L. Park, Sungzoon Cho. (2014). KoNLPy: Korean natural language processing in Python. 26th Annual Conference on Human and Language Technology, pp. 1-4.
- KAIST CILab (2014). Hannanum Morphological Analysis http://semanticweb.kaist.ac.kr/hannanum/index.html