References
- Allen, R.G., Tasumi, M., and Trezza, R. (2007). "Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model." Journal of Irrigation and Drainage Engineering, Vol. 133, No. 4, pp. 380-394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
- Ambas, V.T., and Baltas, E. (2012). "Sensitivity analysis of different evapotranspiration methods using a new sensitivity coefficient." Global NEST Journal, Vol. 14, No. 3, pp. 335-343. https://doi.org/10.30955/gnj.000882
- Atkinson, P.M., and Tatnall, A.R. (1997). "Introduction neural networks in remote sensing." International Journal of remote sensing, Vol. 18, No. 4, pp. 699-709. https://doi.org/10.1080/014311697218700
- Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pilegaard, K., Schmid, H.P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S. (2001). "FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities." Bulletin of the American Meteorological Society, Vol. 82, No. 11, pp. 2415-2434. https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
- Chen, B., Black, T.A., Coops, N.C., Hilker, T., Trofymow, J.T., and Morgenstern, K. (2009). "Assessing tower flux footprint climatology and scaling between remotely sensed and eddy covariance measurements." Boundary-Layer Meteorology, Vol. 130, No. 2, pp. 137-167. https://doi.org/10.1007/s10546-008-9339-1
- Choi, B., Lee, J.H., and Kim, D.H. (2008). "Solving local minima problem with large number of hidden nodes on two-layered feed-forward artificial neural networks." Neurocomputing, Vol. 71, No. 16-18, pp. 3640-3643. https://doi.org/10.1016/j.neucom.2008.04.004
- Gao, H., Struble, T.J., Coley, C.W., Wang, Y., Green, W.H., and Jensen, K.F. (2018). "Using machine learning to predict suitable conditions for organic reactions." ACS central science, Vol. 4, No. 11, pp. 1465-1476. https://doi.org/10.1021/acscentsci.8b00357
- Heo, S., Kim, J., and Moon, T. (2018). "Predicting crime risky area using machine learning." Journal of the Korean Association of Geographic Information Studies, Vol. 21, No. 4, pp. 64-80. https://doi.org/10.11108/KAGIS.2018.21.4.064
- Hong, J.K., Kwon, H.J., Lim, J.H., Byun, Y.H., Lee, J.H., and Kim, J. (2009). "Standardization of KoFlux eddy-covariance data processing." Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 1, pp. 19-26. https://doi.org/10.5532/KJAFM.2009.11.1.019
- Hunter, D., Yu, H., Pukish III, M.S., Kolbusz, J., and Wilamowski, B.M. (2012). "Selection of proper neural network sizes and architectures-A comparative study." IEEE Transactions on Industrial Informatics, Vol. 8, No. 2, pp. 228-240. https://doi.org/10.1109/TII.2012.2187914
- Jean, N., Burke, M., Xie, M., Davis, W.M., Lobell, D.B., and Ermon, S. (2016). "Combining satellite imagery and machine learning to predict poverty." Science, Vol. 353, No. 6301, pp. 790-794. https://doi.org/10.1126/science.aaf7894
- Jensen, J.R., Qiu, F., and Ji, M. (1999). "Predictive modelling of coniferous forest age using statistical and artificial neural network approaches applied to remote sensor data." International Journal of Remote Sensing, Vol. 20, No. 14, pp. 2805-2822. https://doi.org/10.1080/014311699211804
- Jeong, D., and Kang, J. (2009). "An analysis of changes in pan evaporation and climate values related to actual evaporation." Journal of Korea Water Resources Association, Vol. 42, No. 2, pp. 117-129. https://doi.org/10.3741/JKWRA.2009.42.2.117
- Kang, M., Kwon, H., Kim, J., Kim, H.S., Ryu, Y., Lee, S.J., and Choi, T. (2018). "Korean flux monitoring network's past, present, and future." Korean Journal of Agricultural and Forest Meteorology, Vol. 20, No. 1, pp. 1-4. https://doi.org/10.5532/KJAFM.2018.20.1.1
- Kendale, S., Kulkarni, P., Rosenberg, A.D., and Wang, J. (2018). "Supervised machine-learning predictive analytics for prediction of postinduction hypotension." Anesthesiology, Vol. 129, No. 4, pp. 675-688. https://doi.org/10.1097/ALN.0000000000002374
- Kim, K., Baik, J., Lee, J., Lee, Y., Jung, S., and Choi, M. (2016). "An assessment and analysis of the gap-filling techniques for revising missing data of flux tower based evapotranspiration-FAO-PM, MDV, and Kalman filter." Journal of the Korean Society of Hazard Mitigation, Vol. 16, No. 6, pp. 95-107. https://doi.org/10.9798/KOSHAM.2016.16.6.95
- Kwon, H.J., Park, S.B., Kang, M.S., Yoo, J.I., Yuan, R., and Kim, J. (2007). "Quality control and assurance of eddy covariance data at the two KoFlux sites." Korean Journal of Agricultural and Forest Meteorology, Vol. 9, No. 4, pp. 260-267. https://doi.org/10.5532/KJAFM.2007.9.4.260
- Langley, P., and Simon H. (1995). "Applications of machine learning and rule induction." Communications of the ACM, Vol. 38, No. 11, pp. 54-64. https://doi.org/10.1145/219717.219768
- Marin, F.R., Angelocci, L.R., Nassif, D.S., Costa, L.G., Vianna, M. S., and Carvalho, K.S. (2016). "Crop coefficient changes with reference evapotranspiration for highly canopy-atmosphere coupled crops." Agricultural Water Management, Vol. 163, pp. 139-145. https://doi.org/10.1016/j.agwat.2015.09.010
- Mitchell, T.M. (1997). Machine learning. The McGraw-Hill Companies Inc., Boston, U.S., pp. 52-78.
- Panchal, G., Ganatra, A., Kosta, Y.P., and Panchal, D. (2011). "Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers." International Journal of Computer Theory and Engineering, Vol. 3, No. 2, pp. 332-337.
- Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D. (2006). "Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: Algorithms and uncertainty estimation." Biogeosciences, Vol. 3, No. 4, pp. 571-583. https://doi.org/10.5194/bg-3-571-2006
- Park, J., Baik, J., and Choi, M. (2017). "Satellite-based crop coefficient and evapotranspiration using surface soil moisture and vegetation indices in Northeast Asia." Catena, Vol. 156, pp. 305-314. https://doi.org/10.1016/j.catena.2017.04.013
- Park, J., Byun, K., Choi, M., Jang, E., Lee, J., Lee, Y., and Jung, S. (2015). "Evaluation of statistical gap fillings for continuous energy flux (evapotranspiration) measurements for two different land cover types." Stochastic Environmental Research And Risk Assessment, Vol. 29, No. 8, pp. 2021-2035. https://doi.org/10.1007/s00477-015-1101-x
- Peterson, T.C., Golubev, V.S., and Groisman, P.Y. (1995). "Evaporation losing its strength." Nature, Vol. 377, No. 6551, pp. 687-688.
- Post, H., Franssen, H.H., Graf, A., Schmidt, M., and Vereecken, H. (2015). "Uncertainty analysis of eddy covariance CO2 flux measurements for different EC tower distances using an extended two-tower approach." Biogeosciences, Vol. 12, No. 4, p. 1205. https://doi.org/10.5194/bg-12-1205-2015
- Roderick, M.L., and Farquhar, G.D. (2004). "Changes in Australian pan evaporation from 1970 to 2002." International Journal of Climatology, Vol. 24, No. 9, pp. 1077-1090. https://doi.org/10.1002/joc.1061
- Sartori, M.A., and Antsaklis, P.J. (1991). "A simple method to derive bounds on the size and to train multilayer neural networks." IEEE transactions on neural networks, Vol. 2, No. 4, pp. 467-471. https://doi.org/10.1109/72.88168
- Sheela, K.G., and Deepa, S.N. (2013). "Review on methods to fix number of hidden neurons in neural networks." Mathematical Problems in Engineering, 2013, Article 425740.
- Tamura, S.I., and Tateishi, M. (1997). "Capabilities of a four-layered feedforward neural network: Four layers versus three." IEEE Transactions on Neural Networks, Vol. 8, No. 2, pp. 251-255. https://doi.org/10.1109/72.557662
- Yuan, R., Kang, M.S., Park, S.B., Hong, J.K., Lee, D.H., and Kim, J. (2007). "The effect of coordinate rotation on the eddy covariance flux estimation in a hilly KoFlux forest catchment." Korean Journal of Agricultural and Forest Meteorology, Vol. 9, No. 2, pp. 100-108. https://doi.org/10.5532/KJAFM.2007.9.2.100