DOI QR코드

DOI QR Code

Development of a Portable Total-phosphorus Monitoring System for Preventing Eutrophication in Advance

부영양화 사전 예방을 위한 휴대용 총인 모니터링 시스템 개발

  • Jung, Dong Geon (Safety-System R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Seung Deok (School of Electronics Engineering College of IT Engineering) ;
  • Kwon, Soon Yeol (School of Electronics Engineering College of IT Engineering) ;
  • Lee, Jae Yong (School of Electronics Engineering College of IT Engineering) ;
  • Kim, Yu Seong (School of Electronics Engineering College of IT Engineering) ;
  • Lee, Junyeop (Safety-System R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, JaeKeon (Safety-System R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Sae-Wan (Safety-System R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Kong, Seong Ho (School of Electronics Engineering College of IT Engineering) ;
  • Jung, Daewoong (Safety-System R&D Group, Korea Institute of Industrial Technology (KITECH))
  • 정동건 (한국생산기술연구원 안전시스템연구그룹) ;
  • 김승덕 (경북대학교 IT대학 전자공학부) ;
  • 권순열 (경북대학교 IT대학 전자공학부) ;
  • 이재용 (경북대학교 IT대학 전자공학부) ;
  • 김유성 (경북대학교 IT대학 전자공학부) ;
  • 이준엽 (한국생산기술연구원 안전시스템연구그룹) ;
  • 김재건 (한국생산기술연구원 안전시스템연구그룹) ;
  • 김세완 (한국생산기술연구원 안전시스템연구그룹) ;
  • 공성호 (경북대학교 IT대학 전자공학부) ;
  • 정대웅 (한국생산기술연구원 안전시스템연구그룹)
  • Received : 2020.09.02
  • Accepted : 2020.09.24
  • Published : 2020.09.30

Abstract

In this study, a portable total-phosphorus (TP) monitoring system utilizing a photocatalytic-reaction-based pretreatment method is proposed, fabricated, and characterized. Commercial TP monitoring systems are only used in laboratories because of their complex monitoring procedure, bulk-size, and high-cost. In particular, pretreatment in commercial TP monitoring systems is performed at high temperatures (> 120 ℃) and pressure (> 1.1 kg cm-2) making it difficult to minimize the scale of the systems. The proposed TP monitoring system employs a pretreatment method with a photocatalytic reaction; thus, its size can be reduced, as photocatalytic reactions occur at room temperature and atmospheric pressure. Analytes with various TP concentrations are pretreated using the proposed portable TP monitoring system and are quantitatively measured with an LED and a photodiode.

Keywords

References

  1. S. R. Carpenter, "Eutrophication of aquatic ecosystems : Bistalbility and soil phosphorus", Proc. Natl. Acad. Sci. USA, Vol. 102, No. 29, pp. 10002-10005, 2005. https://doi.org/10.1073/pnas.0503959102
  2. G. F. Lee, "The role of phosphorus in the eutrophication and diffuse source control", Water Res., Vol. 7, No. 1-2, pp. 111-128, 1973. https://doi.org/10.1016/0043-1354(73)90156-5
  3. D. W. Schindler, S. R. Carpenter, S. C. Chapra, R. E. Hecky, and D. M. Orihel, "Reducing phosphorus to curb lake eutrophication is a success", Environ. Sci. Technol., Vol. 50, No. 17, pp, 8923-8929, 2016. https://doi.org/10.1021/acs.est.6b02204
  4. E. M. Bennett, S. R. Carpenter, and N. F. Caraco, "Human impact on erodible phosphorus and eutrophication: A global perspective", BioScience, Vol. 51, No. 3, pp. 227-234, 2001. https://doi.org/10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2
  5. P. J. Dilion and F. H. Rigler, "The phosphorus-chlorolhyll relationship in lakes", Limnol. Oceanogr., Vol. 19, No. 5, pp. 767-773, 1974. https://doi.org/10.4319/lo.1974.19.5.0767
  6. D. L. Correll, "The role of phosphorus in the eutrophication of receiving water : A Review", J. Environ. Qual., Vol. 27, No. 2, pp. 261-266, 1998. https://doi.org/10.2134/jeq1998.00472425002700020004x
  7. M. Oliveira and A. V. Machado, "The role of phosphorus on eutrophication : a historical review and future perspectives", Environ. Technol. Rev., Vol. 2, No. 1, pp. 117-127, 2013. https://doi.org/10.1080/21622515.2013.861877
  8. R. Bol, G. Gruau, P.-E. Mellander, R. Dupas, M. Bechmann, E. Skarbovik, M. Bieroza, F. Djodjic, M. Glendell, P. Jordan, B. V. D. Grift, M. Rode, E. Smolders, M. Verbeeck, S. Gu, E. Klumpp, I. Pohle, M. Fresne, and C. GascuelOdoux, "Challenges of reducing phosphorus based water eutrophication in the agricultural landscapes of northwest europe", Front. Mar. Sci., Vol. 5, No. 276, pp. 1-16, 2018. https://doi.org/10.3389/fmars.2018.00001
  9. C. Wang, L. Bai, H. L. Jiang, and H. Xu, "Algal bloom sedimentation induces variable control of lake eutrophication by phosphorus inactivating agents", Sci. Total Environ., Vol. 557, No. 1, pp. 479-488, 2016.
  10. D. S. Jeffries, F. P. Dieken, and D. E. Jones, "Performance of the autoclave digestion method for total phosphorus analysis", Water Res., Vol 13, No. 3, pp. 275-279, 1979 https://doi.org/10.1016/0043-1354(79)90206-9
  11. J. Ma, Y. Yuan, T. Zhou, and D. Yuan, "Determination of total phosphorus in natural water with a simple neutral digestion method using sodium persulfate" Limnol. Oceanogr. Methods., Vol. 15, No. 4, pp. 372-380, 2017. https://doi.org/10.1002/lom3.10165
  12. D. W. Menzel and N. Corwin, "Measurements of total phosphorus in sea water based on the liberation of organically bound fractons by persulfate oxidation", Limnol. Oceanogr., Vol. 10, No. 2, pp. 280-282, 1965. https://doi.org/10.4319/lo.1965.10.2.0280
  13. Q. W. Osburn, D. E. Lemmel, and R. L. Downey, "Automated method for ortho-, ortho-plus hydrolysable, and total phosphate in surface and wastewaters", Environ. Sci. Technol., Vol. 8, No. 4, pp. 363-366, 1974. https://doi.org/10.1021/es60089a007
  14. J. E. Harwood, R. A. Van Steenderen, and A. L. Kuhn, "A comparison of some methods for total phosphorus analyses", Water Res., Vol. 3, No. 6, pp. 425-432, 1969. https://doi.org/10.1016/0043-1354(69)90004-9
  15. H. W. Harvey, "The estimation of phosphate and total phosphorus in sea water", J. Mar. Biol. Assoc. UK, Vol. 27, No. 2, pp. 337-359, 1948. https://doi.org/10.1017/S0025315400025418
  16. G. F. Lee, N. L. Clesceri, and G. P. Fitzgerald, "Studies on the analysis of phosphate in algal cultures", Air Water Pollut., Vol. 9, No. 11, pp. 715-722, 1965
  17. OShea. K.E, Dionvsiou. D.D, "Advanced Oxidation Processes for Water treatment", J. Phys. Chem. Lett., Vol. 3, No. 15 , pp.2122-2113, 2012
  18. S. Fukuzumi, K. Ohkubo, "Selective photocatalytic reactions with organic photocatalysts", Chem. Sci., Vol. 4, No. 2, pp. 561-574, 2013 https://doi.org/10.1039/C2SC21449K
  19. A. Fernandes, P. Makos, Z. Wang, G. Boczkaj, "Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents", Chem. Eng., Vol. 391, No. , pp. 123488-123502, 2020 https://doi.org/10.1016/j.cej.2019.123488
  20. Roman V. Prihod'ko, "Photocatalysis: Oxidative Processes in Water Treatement", J. Chem., Vol. 2013, No. 168701, pp. 1-8, 2013 https://doi.org/10.1155/2013/168701