DOI QR코드

DOI QR Code

Comparison of Cariogenic Characteristics between Fluoride-sensitive and Fluoride-resistant Streptococcus mutans

불소 민감성 Streptococcus mutans와 불소 저항성Streptococcus mutans의 우식원성 특성 비교

  • Ong, Seung-Hwan (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Kim, Jongsoo (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Baek, Dong-Heon (Department of Microbiology and Immunology, College of Dentistry, Dankook University) ;
  • Yoo, Seunghoon (Department of Pediatric Dentistry, College of Dentistry, Dankook University)
  • 옹승환 (단국대학교 치과대학 소아치과학교실) ;
  • 김종수 (단국대학교 치과대학 소아치과학교실) ;
  • 백동헌 (단국대학교 치과대학 구강미생물학교실) ;
  • 유승훈 (단국대학교 치과대학 소아치과학교실)
  • Received : 2020.05.25
  • Accepted : 2020.06.30
  • Published : 2020.11.30

Abstract

The aim of this study is to compare cariogenic characteristics of fluoride-sensitive Streptococcus mutans [fluoride-sensitive (FS) S. mutans ] and fluoride-resistant Streptococcus mutans [fluoride-resistant (FR) S. mutans] in the presence of sucrose, and to evaluate its effect on cariogenic biofilm formation. S. mutans ATCC 25175 was continuously cultured in trypticase soy broth (TSB) containing NaF (70 ppm) for 40 days to generate FR S. mutans. FS and FR S. mutans were inoculated in TSB with or without 2% sucrose, and optical density and pH were measured every hour. An oral biofilm was formed using saliva bacteria and analyzed through confocal laser scanning microscopy and CFU count. Finally, the expression of glucosyltransferases genes of both S. mutans was investigated through RT-PCR. FR S. mutans exhibited slower growth and lower acidogenicity in the presence of sucrose compared to FS S. mutans . Both cariogenic and single species biofilm formation was lower in the presence of FR S. mutans, along with reduced number of bacteria. FR S. mutans showed significantly low levels of gtfB, gtfC, and gtfD expression compared to FS S. mutans . On the basis of results, FR S. mutans may be less virulent in the induction of dental caries.

이 연구의 목적은 불소 민감성(fluoride-sensitive) Streptococcus mutans (FS S. mutans ) 와 불소 저항성(fluoride-resistant) Streptococcus mutans (FR S. mutans )의 우식원성 특성을 비교하는 것이다. S. mutans ATCC 25175 균주를 NaF (70 ppm)를 포함한 trypticase soy broth에서 40일 동안 배양하여 FR S. mutans를 획득하였다. 2% 자당 유무에 따른 FS와 FR S. mutans의 성장과 산 생성 변화를 비교하였고, 타액 세균을 이용하여 FS와 FR S. mutans 바이오필름을 형성하여 공초점 레이저 현미경으로 관찰하고 세균 수를 측정하였다. 또한 RT-PCR을 통해 FS와 FR S. mutans의 gtf 유전자 발현 정도를 비교하였다. FR S. mutans는 FS S. mutans 보다 자당을 이용한 성장과 산 생성이 모두 낮았다. 타액 세균과 단일 균주 바이오필름의 형성 또한 FR S. mutans가 FS S. mutans 보다 적었고, 더 낮은 gtfB, gtfC 및 gtfD 발현을 보였다. 이 연구를 통해 FR S. mutans는 FS S. mutans 보다 감소된 우식원성 특성을 가지고 있음을 관찰하였고, 불소의 주기적 사용은 S. mutans 세균의 활성을 낮추어 우식 발생을 줄이는데 도움이 될 수 있을 것이다.

Keywords

References

  1. Takahashi N, Nyvad B : Caries ecology revisited: microbial dynamics and the caries process. Caries Res, 42:409-418, 2008. https://doi.org/10.1159/000159604
  2. Marsh PD : Dental plaque as a biofilm and a microbial community-implications for health and disease. BMC Oral Health, 6:14, 2006. https://doi.org/10.1186/1472-6831-6-S1-S14
  3. Krzysciak W, Jurczak A, Skalniak A, et al. : The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis, 33:499-515, 2014. https://doi.org/10.1007/s10096-013-1993-7
  4. Fitzgerald RJ, Adams BO, Sandham HJ, Abhyankar S : Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats. Infect Immun, 57:823-826, 1989. https://doi.org/10.1128/IAI.57.3.823-826.1989
  5. Banas JA : Virulence properties of Streptococcus mutans. Front Biosci, 9:1267-1277, 2004. https://doi.org/10.2741/1305
  6. Sturr MG, Marquis RE : Comparative acid tolerances and inhibitor sensitivities of isolated F-ATPases of oral lactic acid bacteria. Appl Environ Microbiol, 58:2287-2291, 1992. https://doi.org/10.1128/AEM.58.7.2287-2291.1992
  7. Nobbs AH, Lamont RJ, Jenkinson HF : Streptococcus adherence and colonization. Microbiol Mol Biol Rev, 73:407-450, 2009. https://doi.org/10.1128/MMBR.00014-09
  8. Monchois V, Willemot RM, Monsan P : Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Rev, 23:131-151, 1999. https://doi.org/10.1016/S0168-6445(98)00041-2
  9. Bowen WH, Koo H : Biology of Streptococcus mutans - derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res, 45:69-86, 2011. https://doi.org/10.1159/000324598
  10. Marquis RE : Antimicrobial actions of fluoride for oral bacteria. Can J Microbiol, 41:955-964, 1995. https://doi.org/10.1139/m95-133
  11. Bradshaw DJ, McKee AS, Marsh PD : Prevention of population shifts in oral microbial communities in vitro by low fluoride concentrations. J Dent Res, 69:436-441, 1990. https://doi.org/10.1177/00220345900690020301
  12. Marsh PD, Bradshaw DJ : The effect of fluoride on the stability of oral bacterial communities in vitro. J Dent Res, 69:668-671, 1990. https://doi.org/10.1177/00220345900690S129
  13. Buzalaf MA, Pessan JP, Honorio HM, Ten Cate JM : Mechanisms of action of fluoride for caries control. Monogr Oral Sci, 22:97-114, 2011. https://doi.org/10.1159/000325151
  14. Marquis RE, Clock SA, Mota-Meira M : Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol Rev, 26:493-510, 2003. https://doi.org/10.1111/j.1574-6976.2003.tb00627.x
  15. Brown LR, White JO, Streckfuss JL, et al. : Effect of continuous fluoride gel use on plaque fluoride retention and microbial activity. J Dent Res 62:746-751, 1983. https://doi.org/10.1177/00220345830620061201
  16. Liao Y, Brandt BW, Deng DM, et al. : Fluoride resistance in Streptococcus mutans : a mini review. J Oral Microbiol, 9:1344509, 2017. https://doi.org/10.1080/20002297.2017.1344509
  17. Lee SH, Choi BK, Kim YJ : The cariogenic characters of xylitol-resistant and xylitol-sensitive Streptococcus mutans in biofilm formation with salivary bacteria. Arch Oral Biol, 57:697-703, 2012. https://doi.org/10.1016/j.archoralbio.2011.12.001
  18. Bratthall D, Hansel-Petersson G, Sundberg H : Reasons for the caries decline: what do the experts believe? Eur J Oral Sci, 104:416-422, 1996. https://doi.org/10.1111/j.1600-0722.1996.tb00104.x
  19. Bowden GH : Effects of fluoride on the microbial ecology of dental plaque. J Dent Res, 69:653-659, 1990. https://doi.org/10.1177/00220345900690S127
  20. Brussock SM, Kral TA : In vitro flouride resistance in a cariogenic Streptococcus. Ohio J Sci, 86:73-79, 1986.
  21. Liao Y, Chen J, Deng DM, et al. : Identification and functional analysis of genome mutations in a fluoride-resistant Streptococcus mutans strain. PLoS One, 10:0122630, 2015.
  22. Streckfuss JL, Perkins D, Graves L, et al. : Fluoride resistance and adherence of selected strains of Streptococcus mutans to smooth surfaces after exposure to fluoride. J Dent Res, 59:151-158, 1980. https://doi.org/10.1177/00220345800590021501
  23. Leme AP, Koo H, Cury JA, et al. : The role of sucrose in cariogenic dental biofilm formation-new insight. J Dent Res, 85:878-887, 2006. https://doi.org/10.1177/154405910608501002
  24. Dawes C : What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc, 69:722-725, 2003.
  25. Lemos JA, Burne RA : A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology, 154:3247-3255, 2008. https://doi.org/10.1099/mic.0.2008/023770-0
  26. Rosen S, Frea JI, Hsu SM : Effect of fluoride-resistant microorganisms on dental caries. J Dent Res, 57:180-180, 1978. https://doi.org/10.1177/00220345780570020301
  27. Xiao J, Klein MI, Koo H, et al. : The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog, 8:1002623, 2012.
  28. Bowen WH, Burne RA, Wu H, Koo H : Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol, 26:229-242, 2018. https://doi.org/10.1016/j.tim.2017.09.008
  29. Pandit S, Kim JE, Jeon JG, et al. : Effect of sodium fluoride on the virulence factors and composition of Streptococcus mutans biofilms. Arch Oral Biol, 56:643-649, 2011. https://doi.org/10.1016/j.archoralbio.2010.12.012
  30. Shani S, Friedman M, Steinberg D : The anticariogenic effect of amine fluorides on Streptococcus sobrinus and glucosyltransferase in biofilms. Caries Res, 34:260-267, 2000. https://doi.org/10.1159/000016600
  31. Pessan JP, Alves KM, Buzalaf MA, et al. : Effects of regular and low-fluoride dentifrices on plaque fluoride. J Dent Res, 89:1106-1110, 2010. https://doi.org/10.1177/0022034510375827
  32. Watson PS, Pontefract HA, Robinson C, et al. : Penetration of fluoride into natural plaque biofilms. J Dent Res, 84:451-455, 2005. https://doi.org/10.1177/154405910508400510
  33. Naumova EA, Kuehnl P, Arnold WH, et al. : Fluoride bioavailability in saliva and plaque. BMC Oral Health, 12:3, 2012. https://doi.org/10.1186/1472-6831-12-3
  34. Koo H : Strategies to enhance the biological effects of fluoride on dental biofilms. Adv Dent Res, 20:17-21, 2008. https://doi.org/10.1177/154407370802000105
  35. Marinho VC, Chong LY, Worthington HV, Walsh T : Fluoride mouthrinses for preventing dental caries in children and adolescents. Cochrane Database Syst Rev, 7:CD002284, 2016.