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Abstract
This paper suggests three available methods for finding nonnegative estimates of variance components of the

random effects in mixed models. The three proposed methods based on the concepts of projections are called
projection method I, II, and III. Each method derives sums of squares uniquely based on its own method of
projections. All the sums of squares in quadratic forms are calculated as the squared lengths of projections of an
observation vector; therefore, there is discussion on the decomposition of the observation vector into the sum of
orthogonal projections for establishing a projection model. The projection model in matrix form is constructed
by ascertaining the orthogonal projections defined on vector subspaces. Nonnegative estimates are then obtained
by the projection model where all the coefficient matrices of the effects in the model are orthogonal to each
other. Each method provides its own system of linear equations in a different way for the estimation of variance
components; however, the estimates are given as the same regardless of the methods, whichever is used. Hartley’s
synthesis is used as a method for finding the coefficients of variance components.

Keywords: mixed model, projection, quadratic form, random effect, synthesis

1. Introduction

Much literature has been devoted to the estimation of variance components in random-effects or
mixed-effects models. A variance component should always be nonnegative by definition; however,
we sometimes get it as negative. Searle (1971) and Searle and Gruber (2016) illustrated this with
the simple hypothetical data of a one-way classification having three observations in two classes and
insisted that there is nothing intrinsic in the analysis of variance method to prevent it. Neverthe-
less, when a negative estimate happens, it is not easy to handle this situation in interpretation and
action. Therefore, many papers have been contributed to strategies to deal with the negative values
as estimates of variance components. Nelder (1954) suggested that negative estimates of variance
components can occur in certain designs such as split-plot and randomized block designs by random-
ization. Thompson (1961, 1963) discussed the interpretation of the negative estimate and suggests
an alternative method when the analysis of variance method yields negative estimates. Milliken and
Johnson (1984) also suggested a procedure to eliminate negative estimates of variance components in
random-effects models.

The analysis of the variance method is almost exclusively applied to balanced data to estimate
variance components. However, there are multiple methods for unbalanced data. Therefore, it is nec-
essary to identify the types of data before choosing a method. Balanced data have the same numbers
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of observations in each cell; however, unbalanced data have unequal numbers of observations in the
subclasses made by the levels of classification factors. Depending on the types of data, many meth-
ods can be applied to the estimation of variance components in a vector space. Representing data as
vectors, the vector space of an observation vector can be partitioned in many ways, depending on the
data structure. The vector space can always be partitioned into orthogonal vector subspaces according
to the sources of variation for balanced data, but it is not true for unbalanced data. This is the main
difference between balanced and unbalanced data from the view point of a vector space.

A random effect is a random variable representing the effect of a randomly chosen level from a
population of levels that a random factor can assume, while a fixed effect is an unknown constant
denoting the effect of a predetermined level of a factor. A linear model with these two types of
effects is called a mixed-effects model. The primary concern with the model in this paper is in the
nonnegative estimation of variance components of random effects. A negative estimate can happen
in any method that contributes to the estimation. Therefore, many papers have investigated strategies
for interpretation and alternatives. Such strategies are seen in Searle and Fawcett (1970), Hill (1965,
1967), Searle et al. (2009) and Harville (1969). However, it is necessary to have a method that yields
nonnegative estimates.

Henderson (1953) suggested a method that uses reductions in sums of squares due to fitting both
the full model and different sub-models of it to estimate variance components of random effects in
mixed models. This method is called the fitting constants method or Henderson’s Method 3. Even
though it has been used extensively for the estimation of variance components in mixed models, it still
has some defects producing negative estimates. Hartley’s (1967) synthesis is also used to calculate the
coefficients of variance components in the method. However, we should recognize whether quadratic
forms for variance components are in the right form or not despite the usefulness of this method.
Otherwise, expectations of the quadratic forms can be different from the real ones. This is going to be
discussed in detail in projection model building.

This paper suggests three methods to produce nonnegative estimates for variance components in
mixed models. They are based on the concept of projection defined on a vector space. The definition
of a projection and its related concepts are discussed in Graybill (1983) and Johnson and Wichern
(2014). Quadratic forms in the observations can be obtained as squared lengths of projections defined
on proper vector subspaces. Each method requires that all vector subspaces for projections should
be orthogonal to each other at the stage of fitting sub-models serially. It is possible to get nonnega-
tive estimates when the orthogonality is satisfied with vector subspaces. Therefore, we also discusses
how to construct orthogonal vector subspaces from a given mixed model. Quadratic forms as sums
of squares due to random effects are then used to evaluate the expected values. Hereafter, equating
quadratic forms to their expected values represents available equations for the estimates. For calculat-
ing the coefficients of variance components, Hartley’s synthesis is applied but in a different manner,
which will be discussed.

2. Mixed models

Mixed models are used to describe data from experimental situations where some factors are fixed
and others are random. When two types of factors are considered in experiments, one is interested in
both parts, that is, the fixed-effects part and the random-effects part, in models. Let α be a vector of all
the fixed effects except µ in a mixed model and let δi denote a set of random effects for random factor
i for i = 1, 2, . . . , k. Then, δi could be interaction effects or nested-factor effects when they are simply
regarded as effects from random factors. The matrix notation of the mixed model for an observation
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vector y is

y = jµ + XFαF + XRδR + ϵ

= jµ + XFαF +

k∑
i=1

Xiδi + ϵ, (2.1)

where j is an n × 1 vector of ones, µ is the general mean, XF is an n × a matrix, αF is the a × 1
vector of fixed effects, the Xi’s are the partitions of an n × r matrix XR, each being an n × ri matrix
for r =

∑k
i=1 ri, δi is an ri × 1 vector of random effects, jµ + XFαF is the fixed part of the model

and XRδR + ϵ is the random part of the model. δi’s are assumed to be independent and identically
distributed as N(0, σ2

δi
Iri ), and ϵ is assumed to be distributed as N(0, σ2

ϵ In) and independent of δi. The
mean and variance of y from (2.1) is

E(y) = jµ + XFαF ,

Σ = var(y) =
k∑

i=1

Xivar(δi)XT
i + σ

2
ϵ In. (2.2)

The expected value of the quadratic form yT Qy is

E
(
yT Qy

)
= tr (QΣ) + E(y)T QE(y). (2.3)

Substituting the terms of (2.2) for (2.3) is

E
(
yT Qy

)
=

r∑
i=1

σ2
δi

tr
(
QXiXT

i

)
+ σ2

ϵ tr(Q) + E( jµ + XFαF)T QE( jµ + XFαF). (2.4)

The expectation of any quadratic form in the observations of a vector y is represented as a function of
variance components and fixed effects. The variance components of the full model can be estimated
by the fitting constants method of using reductions in the sums of squares due to fitting both the
full model and the sub-model. This method has been widely used for the estimation of variance
components for unbalanced data because it provides unbiased estimators of the variance components
that do not depend on any fixed effects in the model. However, it still has an unsolved problem of
having negative solutions as estimates. As an alternative, a method which is based on the concepts of
projections is suggested. To discuss it, we consider the model (2.1) as representative. We naturally
divide the model into a fixed part and a random part since there are two parts in the model. The
random part of the model consists of random effects and errors:

y = jµ + XFαF + ϵR

= ( j, XF)(µ,αF)T + ϵR, (2.5)

where ϵR =
∑k

i=1 Xiδi + ϵ. The general mean µ and fixed effects αF of (2.5) can be estimated from
normal equations. Regarding y as an observation vector in the n-dimensional vector space, it can be
decomposed into two component vectors orthogonal to each other. The decomposition of y is done
by projecting y onto the vector subspace generated by ( j, XF).
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3. Projection method

For a mixed model such as (2.5), we can decompose y into two components by means of projections
referred to as a projection method. Denoting ( j, XF) and (µ,αF)T by XM and αM , respectively, the
projection of y onto the vector subspace spanned by XM is XM X−M y, where X−M denotes a Moore-
Penrose generalized inverse of XM . Then, y can be decomposed into two vectors, that is, XM X−M y and
(I − XM X−M)y, which are orthogonal. Instead of the fitting constants method, the projection method
is used to try to estimate the nonnegative estimates of the variance components in a mixed model.
To explain the method simply, suppose there are two factors A and B for a two-way cross-classified
unbalanced data where A is fixed with a levels and B is random with b levels. The model for this is

y = jµ + XFαF + Xβδβ + Xαβδαβ + ϵ

= XMαM + ϵM , (3.1)

where y is an observation vector in the n dimensional vector space, αF is a vector of fixed effects of A,
δβ and δαβ represent vectors of random effects of B and AB interaction respectively, and XM = ( j, XF),
αM = (µ,αF)T and ϵM = Xβδβ + Xαβδαβ + ϵ. The second expression of (3.1) represents the fixed-
effects part and the random part. The random part ϵM is obtained by the projection of y onto a vector
subspace generated by the XM , which is (I − XM X−M)y. So, y is represented as

y = XM X−M y +
(
I − XM X−M

)
y

= yM + eM , (3.2)

where yM = XM X−M y satisfies the two conditions for being the projection of y onto a vector subspace
spanned by the columns of XM . The projection should be obtained by the orthogonal projection to the
subspace and denoted as a linear combination of the column vectors of XM . XM X−M y of (3.2) satisfies
the conditions. The random part eM = (I − XM X−M)y is not affected by the fixed effects since yM is
orthogonal to eM; in addition, it has all the information about the variance components and random
error variance. We can use eM for finding the related variance components since there are two random
effects and random error terms in the model of (3.1). The model for the estimation of σ2

β defined as
the variance component of δβ is

eM =
(
I − XM X−M

)
y

= XBδβ + ϵβ, (3.3)

where XB = (I − XM X−M)Xβ and ϵβ = (I − XM X−M)(Xαβδαβ + ϵ). The projection of eM onto the
subspace spanned by XB is XBX−BeM , which is [(I − XM X−M)Xβ][(I − XM X−M)Xβ]−eM . Then,

eM = XBX−BeM +
(
I − XBX−B

)
eM

= yB + eB, (3.4)

where yB = XBX−BeM is the projection of eM onto the column space of XB. yB and eB are orthogonal
each other. Therefore, eB is not affected by the random effects δβ. Therefore, eB is used for finding
the subspace that has information about σ2

αβ defined as the variance component of δαβ. The model for
this is

eB =
(
I − XBX−B

)
eM = XABδαβ + ϵαβ, (3.5)
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where XAB = (I− XM X−M − XBX−B)Xαβ and ϵαβ = (I− XM X−M − XBX−B)ϵ. Therefore, the projection of
eB onto the subspace generated by XAB is yAB = XABX−ABeB. Then,

eB = XABX−ABeB +
(
I − XABX−AB

)
eB

= yAB + eAB, (3.6)

where eAB is (I−XABX−AB)eB. Finally, we can use eAB for finding the coefficient matrix of the random
error vector which generates the error space orthogonal to all the other spaces.

eAB =
(
I − XABX−AB

)
eB

=
(
I − XM X−M − XBX−B − XABX−AB

)
ϵ. (3.7)

Thus, we can know that eAB has all the information about σ2
ϵ of the random error vector ϵ. Denoting

y as the sum of orthogonal projections and error part,

y = yM + yB + yAB + eAB

= XM X−M y + XBX−BeM + XABX−ABeB +
(
I − XABX−AB

)
eB. (3.8)

Each term of (3.8) can be used to calculate the sums of squares that are quadratic forms in the obser-
vations. Since y is partitioned as four terms, there are four available sums of squares. We denote them
SSM , SSB, SSAB, and SSE where subscripts are corresponding factors. They are defined as

SSM = yT XM X−M y,

SSB = yT (
I − XM X−M

)
XBX−B

(
I − XM X−M

)
y,

SSAB = yT (
I − XM X−M − XBX−B

)
XABX−AB

(
I − XM X−M − XBX−B

)
y,

SSE = yT XE y, (3.9)

where each SS term is given as the squared length of the projection of y onto its own vector subspace,
and XE = (I − XM X−M − XBX−B − XABX−AB). All the sums of squares are evaluated by using the
eigenvalues and eigenvectors of the projection matrices associated with the quadratic forms in y. We
can identify the coefficient matrices that are orthogonal to each other through the procedure for finding
projections on subspaces.

4. Projection model

Since y is composed of the sum of mutual orthogonal projections such as (3.8), y can be represented
by the orthogonal coefficients matrices of the effects of the assumed model (3.1). Temporarily, we
denote y as yp to differentiate the model based on projections from the classical model (3.1). Then,
the model for yp is

yp = XMαM + XBδβ + XABδαβ + XEϵ, (4.1)

where yp = y. Since each coefficient matrix of the effects is derived from the corresponding or-
thogonal projection, the equation of (4.1) defines a projection model that is different from a classical
two-way linear mixed model (3.1). It is useful for evaluating the coefficients of the variance compo-
nents in the expectations of the quadratic form of an observation vector yp. All the coefficient matrices
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are orthogonal in the model. δβ, δαβ, and ϵ are assumed to be N(0, σ2
βIb), N(0, σ2

αβIab), and N(0, σ2
ϵ In)

respectively. The expectation and the covariance matrix of yp of the projection model (4.1) is

E(yp) = XMαM ,

Σ = σ2
βXBXT

B + σ
2
αβXABXT

AB + σ
2
ϵ XE XT

E . (4.2)

Expectations of the SS terms except SSM of (3.9) are

E(SSB) = σ2
βtr

(
XT

B XB

)
, E(SSAB) = σ2

αβtr
(
XT

ABXAB

)
, E(SSE) = σ2

ϵ tr(XE). (4.3)

Equating the three sums of squares, SSB, SSAB, and SSE of (3.9) to their corresponding expectations
leads to linear equations in the variance components, the solutions to which are taken as the estimators
of those components. Now, the equations are

SSB = σ̂
2
βtr

(
XT

B XB

)
, SSAB = σ̂

2
αβtr

(
XT

ABXAB

)
, SSE = σ̂

2
ϵ tr (XE) . (4.4)

Solutions from the linear equations (4.4) are nonnegative estimates of the variance components. We
will identify them as projection method I, II, and III since there are three different ways of getting
sums of squares by means of projections. The procedure using the system of linear equations like
(4.4) is called projection method I. We can use eM , eB, and eAB since the projection method II uses
residual vectors after projecting y onto orthogonal subspaces. Then,

eM =
(
I − XM X−M

)
yp

=
(
I − XM X−M

) (
XMαM + XBδβ + XABδαβ + XEϵ

)
. (4.5)

Since eM has three random components, eT
MeM in the quadratic form of yp in which the coefficients

matrices of the projection model are orthogonal is available for estimating their variance components.
Denoting eT

MeM as RSSM ,

RSSM = eT
MeM , (4.6)

where RSSM measures the variation due to the three random effects, and thus, the quantity is used
for the estimation of three variance components σ2

β, σ
2
αβ, and σ2

ϵ . Representing the residual random
vector eB as yp, has two random components as follows.

eB =
(
I − XBX−B

)
eM

=
(
I − XM X−M − XBX−B

) (
XABδαβ + XEϵ

)
. (4.7)

Therefore, eT
BeB is used as an variation quantity for two random effects vectors. Denoting eT

BeB as
RSSB,

RSSB = eT
BeB

= yT
p
(
I − XM X−M − XBX−B

)
yp, (4.8)

where RSSB is used for estimating the two variance components σ2
αβ and σ2

ϵ since eB has just two
random effects. Finally, expressing eAB as yp,

eAB =
(
I − XABX−AB

)
eB = XEϵ, (4.9)
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which has just one random component ϵ. Therefore, eT
ABeAB shows the variation due to the random

error vector only, and this quantity is used for estimating the variance componentσ2
ϵ . Denoting eT

ABeAB

as RSSAB,

RSSAB = eT
ABeAB. (4.10)

Therefore, RSSM , RSSB, and RSSAB are another set of sums of squares for estimating variance com-
ponents instead of using sums of squares derived from the projections as an alternative method. RSSM ,
RSSB, and RSSAB are also evaluated by the eigenvalues and eigenvectors of the projection matrices
associated with the quadratic forms in yp. Now, the expected values of the RSS’s are

E(RSSM) = tr
((

I − XM X−M
)
Σ
)

= σ2
βrMB + σ

2
αβrMAB + σ

2
ϵ rME ;

E(RSSB) = tr
((

I − XBX−B
) (

I − XM X−M
)
Σ
)

= σ2
αβrBAB + σ

2
ϵ rBE ;

E(RSSAB) = tr
((

I − XABX−AB
) (

I − XBX−B
) (

I − XM X−M
)
Σ
)

= σ2
ϵ rABE . (4.11)

Then, the linear equations of variance components are obtained by equating the RSS’s to their ex-
pected values, the solutions for which always produce nonlinear estimates. That is,

RSSM = σ̂
2
βrMB + σ̂

2
αβrMAB + σ̂

2
ϵ rME ;

RSSB = σ̂
2
αβrBAB + σ̂

2
ϵ rBE ;

RSSAB = σ̂
2
ϵ rABE . (4.12)

Even though two systems of linear equations are not the same, either system will produce the same
estimates of the variance components that are nonnegative. As another method, projection method III
is also available for the estimation of variance components. This method is done as follows. For the
model of (3.1), y = Xθ + ϵ, where X = ( j, XF , Xβ, Xαβ) and θ = (µ,αF , δβ, δαβ)T . This method splits
the vector space of an observation vector into two subspaces, one for the projection part and the other
for the error part at each step. Then, the projection of y onto the subspace spanned by XX− is given by
XX−y, and the error vector in the error vector space is (I − XX−)y. Therefore, the coefficient matrix
of ϵ is derived as (I − XX−) from it. The quadratic form y′(I − XX−)y denoted by BSS0 is the sum of
squares due to random error only, which has all the information about σ2

ϵ . For information about both
σ2
αβ and σ2

ϵ , the vector space of the observation vector can be decomposed into two parts one for the
projection part and the other for the error part. For this, the model to be fitted is y = X1θ1 + ϵ1, where
X1 = ( j, XF , Xβ), θ1 = (µ,αF , δβ)T , and ϵ1 = Xαβδαβ + ϵ. Then, the projection of y onto the subspace
spanned by X1X−1 is given by X1X−1 y, and the error vector in the error vector space is (I − X1X−1 )y.
The quadratic form yT (I − X1X−1 )y denoted by BSS1 has information about σ2

αβ and σ2
ϵ . Now, the

error vector is represented by

(I − X1X−1 )y = (I − X1X−1 )(X1θ1 + ϵ1) (4.13)
= (I − X1X−1 )Xαβδαβ + (I − X1X−1 )ϵ.

Therefore, the coefficient matrix of δαβ is given by (I − X1X−1 )Xαβ. For information about three
variance components σ2

ϵ , σ
2
αβ, and σ2

β, the vector space can be divided into two subspaces considering
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the model matrix of the equation, y = X2θ2 + ϵ2, where X2 = ( j, XF), θ2 = (µ,αF)T , and ϵ2 =

Xβδβ + Xαβδαβ + ϵ. Then, the projection of y onto the subspace spanned by X2X−2 is given by X2X−2 y,
and the error vector in the error vector space is (I − X2X−2 )y. The quadratic form y′(I − X2X−2 )y
denoted by BSS2 has information about σ2

ϵ , σ
2
αβ, and σ2

β. Now, the error vector is represented by

(I − X2X−2 )y = (I − X2X−2 )(X2θ2 + ϵ2) (4.14)

=
(
I − X2X−2

) (
Xβδβ + Xαβδαβ + ϵ

)
.

Therefore, the coefficient matrix of δβ is given by (I − X2X−2 )Xβ. It is necessary to evaluate the
expected values of the quadratic forms for constructing the equations for the variance components.
They are

E(BSS2) = σ2
βc2β + σ

2
αβc2αβ + σ

2
ϵc2ϵ ;

E(BSS1) = σ2
αβc2αβ + σ

2
ϵc2ϵ ;

E(BSS0) = σ2
ϵc2ϵ . (4.15)

The nonnegative estimates of variance components are given as solutions of linear equations of σ̂2
β,

σ̂2
αβ, and σ̂2

ϵ . The above equations are summarized as:

BSS2 = σ̂
2
βc2β + σ̂

2
αβc2αβ + σ̂

2
ϵc2ϵ ;

BSS1 = σ̂
2
αβc2αβ + σ̂

2
ϵc2ϵ ;

BSS0 = σ̂
2
ϵc2ϵ , (4.16)

where ci j’s are coefficients of variance components of expected values of quadratic forms of (4.15).

5. Examples

Montgomery (2013)’s data are illustrated as a first example of nonnegative estimates of random effects
for a two-way mixed model. The data are from an experiment for a gauge capability study where
parts are randomly selected and three operators are fixed. An instrument or gauge is used to measure
a critical dimension on a part. Twenty parts have been selected from the production process, and
only three operators are assumed to use the gauge. The assumed model for the data in Table 1 is
yi jk = µ + αi + γ j + (αγ)i j + ϵi jk, where the αi (i = 1, 2, 3) are fixed effects such that

∑3
i=1 αi = 0

and γ j ( j = 1, 2, . . . , 20), (αγ)i j, and ϵi jk are uncorrelated random variables having zero means and
variances Var(γ j) = σ2

γ, Var((αγ)i j) = σ2
αγ, and Var(ϵi jk) = σ2

ϵ . Under the assumed unrestricted model,
estimated variance components are σ̂2

γ = 10.2798, σ̂2
αγ = −0.1399, and σ̂2

ϵ = 0.9917. Applying the
projection method I to the data, the linear equations of variance components are given as:

SSpart = 1185.425 = 114σ̂2
γ,

SSpart×operator = 27.05 = 76σ̂2
αγ,

SSerror = 59.5 = 60σ̂2
ϵ . (5.1)

The solutions of the equations are σ̂2
γ = 10.3985, σ̂2

αγ = 0.3559, and σ̂2
ϵ = 0.9917. All the variance

components are estimated nonnegatively. When we apply projection method II to the same data, we
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Table 1: Data for a measurement systems capability study from Montgomery (2013)

Part number Operator 1 Operator 2 Operator 3
1 21, 20 20, 20 19, 21
2 24, 23 24, 24 23, 24
3 20, 21 19, 21 20, 22
4 27, 27 28, 26 27, 28
5 19, 18 19, 18 18, 21
6 23, 21 24, 21 23, 22
7 22, 21 22, 24 22, 20
8 19, 17 18, 20 19, 28
9 24, 23 25, 23 24, 24
10 25, 23 26, 25 24, 25
11 21, 20 20, 20 21, 20
12 18, 19 17, 19 18, 19
13 23, 25 25, 25 25, 25
14 24, 24 23, 25 24, 25
15 29, 30 30, 28 31, 30
16 26, 26 25, 26 25, 27
17 20, 20 19, 20 20, 20
18 19, 21 19, 19 21, 23
19 25, 26 25, 24 25, 25
20 19, 19 18, 17 19, 17

Table 2: Hypothetical data of a one-way classification from Searle and Gruber (2016)

Class Observations
1 19, 17, 15
2 25, 5, 15

get

RSSfixed = 114σ̂2
γ + 76σ̂2

αγ + 60σ̂2
ϵ ,

RSSpart = 76σ̂2
αγ + 60σ̂2

ϵ ,

RSSpart × operator = 60σ̂2
ϵ , (5.2)

where RSSfixed = 1271.975, RSSpart = 86.55, and RSSpart × operator = 59.5. The solutions for the
equations are σ̂2

γ = 10.3985, σ̂2
αγ = 0.3559, and σ̂2

ϵ = 0.9917, which are the same as the previous
solutions. Therefore, either one of the projection methods can be used for the nonnegative estimation
of variance components of random effects in a mixed model. Projection method III also gives the
same result as projection methods I and II for the data.

As a second example, Searle and Gruber (2016)’s hypothetical data are illustrated. Searle explains
why a negative estimate can occur in the estimation of variance component of random effects in a
random model. Table 2 shows the data where the one-way random-effects model is assumed since
class is a random factor. The assumed model is yi j = µ + δi + ϵi j, where the δi (i = 1, 2) are random
effects and ϵi j are uncorrelated random errors having zero means and variances Var(δi) = σ2

δ and
Var(ϵi j) = σ2. As a result of the analysis of variance, the estimates of variance components are given
as σ̂2

δ = −15.33 and σ̂2
ϵ = 52. Searle demonstrated how negative estimates could come from the

analysis of variance and insisted that there would be nothing intrinsic in the method to prevent it.
However, the projection methods yield the same nonnegative estimates as σ̂2

δ = 2 and σ̂2
ϵ = 52 in any

method.
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6. Discussion

Variance should be a nonnegative quantity as a measure of variation in data by its definition. In this
work, it shows that orthogonal projections are useful for defining a projection model for nonnegative
variance estimation. There have been many unsuccessful attempts in literature to fix the problem of
negative estimates for variance components over decades; however, the proposed methods in this pa-
per always produce nonnegative estimates of variance components of the random effects in a mixed
model. The two most important findings are checked and discussed for the estimation of the non-
negative variance component. One is that a projection model should be derived from an assumed
mixed-effects model. The other is that expectations of quadratic forms associated with the random
effects should be evaluated from the projection model.

This paper introduces terms such as projection method I, II, and III related to the methods, and the
projection model for emphasizing projection rather than model fitting. The three methods are applied
differently in the application even though they are based on the same assumed model. Each method
uses projections in a different way, but summing up all orthogonal projections come to the observation
vector. Depending on the types of projections, each method produces three different sets of equations
for the evaluation of quadratic forms. Nonetheless, all of them show the same nonnegative estimates
for variance components. It also shows that projection methods can be used for estimating variance
components of the random effects in either random model or mixed model through examples. It
should be noted that all the matrices associated with the quadratic forms come from the projection
model and not from the assumed model. Hartley’s synthesis can yield correct coefficients of variance
components with the orthogonal coefficient matrices.
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