DOI QR코드

DOI QR Code

Improvement of Flame-Retardant Performance of Polyurethane Foam Coated with Water Glass

물유리코팅에 따른 폴리우레탄 폼의 난연성능 개선에 대한 연구

  • Kim, Hyeong-Jun (Icheon Branch, Korea Institute of Ceramic Eng. and Tech.) ;
  • Park, Jewon (Dept. of Material Scienc and Engineering, Hanyang University) ;
  • Na, Hyein (Dept. of Material Scienc and Engineering, Hanyang University) ;
  • Lim, Hyung Mi (Convergence Technology Div., Korea Institute of Ceramic Eng. and Tech.) ;
  • Chang, Gabin (COSMOPOL Corp., Ltd.)
  • 김형준 (한국세라믹기술원 이천분원) ;
  • 박제원 (한양대학교 신소재공학과 대학원) ;
  • 나혜인 (한양대학교 신소재공학과 대학원) ;
  • 임형미 (한국세라믹기술원 융합기술사업단) ;
  • 장가빈 (코스모폴(주))
  • Received : 2020.01.22
  • Accepted : 2020.04.02
  • Published : 2020.04.30

Abstract

In this study, water glass was applied as a coating material to a rigid polyurethane foam to improve the flame-retardant properties of the foam. The heat release rate of the cone calorimeter of the urethane foam, in which the inorganic water-glass coating layer was applied, decreased rapidly. The water glass coated on the polyurethane surface formed a glassy foam by foaming with water, which did not escape during the vitrification reaction when the foam or glass was heated. The glassy foam formed on the polyurethane foam became a fire-resistant insulation layer that inhibited the combustion of the polyurethane foam for more than 10 min. Water glass was found to improve the flame-retardant properties of the rigid polyurethane foam.

경질 폴리우레탄(Polyurethane) 폼(Foam)의 난연 성능을 개선하기 위하여 외부에 물유리를 코팅하였다. 무기질인 물유리 코팅층이 적용된 우레탄폼의 콘칼로리메터의 열방출율(Heat release rate)은 급격히 감소하였다. 폴리우레탄 표면에 코팅된 물유리는 화염에 노출되었거나 가열되었을 때 유리화 반응과 미 탈출 수분에 의한 발포현상으로 인해 유리질 폼을 형성하게 된다. 폴리우레탄 폼 위에 형성된 유리질 폼은 단열층이 되어 10 min 이상 폴리우레탄 폼의 연소를 억제하였다. 이러한 결과에 따라서 물유리는 경질 폴리우레탄 폼의 난연 특성을 개선할 수 있음을 확인하였다.

Keywords

References

  1. Ministry of Land, Infrastructure and Transport, "Fire Retardant Performance Standards for Building Finishing Materials", No. 2019-473 (2019).
  2. Ministry of Land, Transport and Maritime Affairs, "Rules on Standards for Evacuation and Fire Protection of Buildings", MLTM Ordinance No. 147 (2009).
  3. B. Son, T. Hwang and D. Goo, "Fire-Retardation Properties of Polyurethane Nanocomposite by Filling Inorganic Nano Flame Retardant", Polymer (Korea) Vol. 31, No. 5, pp. 404-409 (2007).
  4. O. Kwon, J. Lee, K. Seo, C. Seo and S. B. Kim, "Effect of Flame Retardants on Flame Retardancy of Flexible Polyurethane Foam", Appl. Chem. Eng., Vol. 24, No. 2, pp. 208-213 (2013).
  5. P. Lee, S. Jeoung, J. Ha, B. Kim and J. Han, "Flame Retardancy and Sound Absorption Properties of Polyurethane / Expandable Graphite Foams", Transactions of the Korean Society of Automotive Engineers, Vol. 27, No. 6, pp. 441-445 (2019). https://doi.org/10.7467/KSAE.2019.27.6.441
  6. S. Park, D. Son and J. Kim, "Improving Method for Flame Retardancy of Carbonized Board Made of Wood-based Panels", KR101444200B1 (2013).
  7. J. Y. Kim, "Applications and Uses of Soluble Silicates", Hanrimwon, pp. 115-129 (2014).
  8. B. N. Jang and J. Choi, "Research Trends of Flame Retardant and Flame Retardant Resin", Polymer Science and Technology Vol. 20, No. 1, pp. 8-15 (2009).
  9. KS F ISO 5660-1, "Reaction to Fire Test-Heat Release, Smoke Production and Mass Loss Rate-Part 1:Heat Release Rate (Cone Calorimeter Method) (2003).
  10. J. Y. Kim, "Manufacturing and Applications of Soluble Silicates", Hanrimwon, pp. 83-99 (2011).
  11. H. G. Kim, "Enhanced Flame Resistant Properties of Aluminum Hydroxide Addition on Electrospun Polyurethane Nanofibers", Fire Science and Engineering, Vol. 30, No. 6, pp. 9-13 (2016). https://doi.org/10.7731/KIFSE.2016.30.6.009
  12. A. Varshneya and J. C. Mauro, "Fundamentals of Inorganic Glasses", Elsevier, 3rd Edition, p. 28 (2019).
  13. A. Tonejc, M. Stubicar, A. M. Tonejc, K. Kosanovic, B. Subotic and I. Smit, "Transformation of γ-AlOOH (Boehmite) and Al(OH)3 (Gibbsite) to α-Al2O3 (Corundum) Induced by High-Energy Ball-milling", J. Mat. Sci. Lett., Vol. 13, pp. 519-520 (1994). https://doi.org/10.1007/BF00540186