DOI QR코드

DOI QR Code

Plasmopara elegantissima sp. nov. (Oomycota, Peronosporales), a Downy Mildew Species Specialized to Impatiens textori (Balsaminaceae)

  • Choi, Young-Joon (College of Natural Sciences, Department of Biology, Kunsan National University) ;
  • Gorg, Marlena (Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main) ;
  • Shin, Hyeon-Dong (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Thines, Marco (Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main)
  • Received : 2020.02.20
  • Accepted : 2020.05.03
  • Published : 2020.08.31

Abstract

Over the past 15 years, downy mildew became the most destructive foliar disease in cultivated Impatiens species (Balsaminaceae) worldwide. A previous study had revealed that the causal agent was not Plasmopara obducens (Oomycota, Peronosporales) but Plasmopara destructor on Impatiens walleriana, and Plasmopara velutina on Impatiens balsamina. This hints to a relatively high degree of specialization of Plasmopara on Balsaminaceae. Therefore, it was the aim of the present study to perform multigene phylogenetic analysis and detailed morphological investigation for several Korean downy mildew samples parasitic to cultivated I. walleriana, and I. balsamina, but also to a northeast Asian wild plant, Impatiens textori. It was revealed that I. textori harbors a new species, which is introduced and described here as Plasmopara elegantissima.

Keywords

References

  1. Beakes GW, Honda D, Thines M. Systematics of the Straminipila: Labyrinthulomycota, Hyphochytriomycota, and Oomycota. In: McLaughlin DJ, Spatafora J, editors. Systematics and evolution. New York: Springer; 2014. p. 39-97.
  2. Thines M. Phylogeny and evolution of plant pathogenic oomycetes - a global overview. Eur J Plant Pathol. 2014;138(3):431-447. https://doi.org/10.1007/s10658-013-0366-5
  3. Beakes GW, Thines M. Hyphochytriomycota and Oomycota. In: Archibald JM, Simpson AGB, Slamovits CH, Margulis L, Melkonian M, Chapman DJ, Corliss JO, editors. Handbook of the Protists. Cham: Springer International Publishing; 2016. p. 1-71.
  4. Thines M, Choi YJ. Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology. 2016;106(1):6-18. https://doi.org/10.1094/PHYTO-05-15-0127-RVW
  5. Yerkes WD, Shaw CG. Taxonomy of the Peronospora species on Cruciferae and Chenopodiaceae. Phytopathology. 1959;49:499-507.
  6. Choi YJ, Thines M. (2288) Proposal to reject the name Botrytis farinosa (Peronospora farinosa) (Peronosporaceae: Oomycetes). Taxon. 2014;63(3):675-676. https://doi.org/10.12705/633.19
  7. Choi YJ, Hong SB, Shin HD. Re-consideration of Peronospora farinosa infecting Spinacia oleracea as distinct species, Peronospora effusa. Mycol Res. 2007;111(4):381-391. https://doi.org/10.1016/j.mycres.2007.02.003
  8. Choi YJ, Klosterman SJ, Kummer V, et al. Multilocus tree and species tree approaches toward resolving a complex clade of downy mildews (Straminipila, Oomycota), including pathogens of beet and spinach. Mol Phylogenet Evol. 2015;86:24-34. https://doi.org/10.1016/j.ympev.2015.03.003
  9. Choi YJ, Danielsen S, Lubeck M, et al. Morphological and molecular characterization of the causal agent of downy mildew on quinoa (Chenopodium quinoa). Mycopathologia. 2010;169(5):403-412. https://doi.org/10.1007/s11046-010-9272-y
  10. Choi YJ, Kruse J, Thines M. Hyaloperonospora erucae sp. nov. (Peronosporaceae; Oomycota), the downy mildew pathogen of arugula (Eruca sativa). Eur J Plant Pathol. 2018;151(2):549-555. https://doi.org/10.1007/s10658-017-1389-0
  11. Choi YJ, Thines M, Choi IY, et al. Perofascia is not monotypic - the description of the second taxon affecting the South American crop maca (Lepidium meyenii). Mycol Prog. 2017;16(9):857-864. https://doi.org/10.1007/s11557-017-1320-2
  12. Thines M, Telle S, Ploch S, et al. Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Mycol Res. 2009;113(5):532-540. https://doi.org/10.1016/j.mycres.2008.12.005
  13. Choi YJ, Shin HD, Thines M. Two novel Peronospora species are associated with recent reports of downy mildew on sages. Mycol Res. 2009;113(12):1340-1350. https://doi.org/10.1016/j.mycres.2009.08.010
  14. Gorg M, Ploch S, Kruse J, et al. Revision of Plasmopara (Oomycota, Peronosporales) parasitic to Impatiens. Mycol Prog. 2017;16(8):791-799. https://doi.org/10.1007/s11557-017-1316-y
  15. Salgado-Salazar C, LeBlanc N, Ismaiel A, et al. Genetic variation of the pathogen causing impatiens downy mildew predating and including twenty-first century epidemics on Impatiens walleriana. Plant Dis. 2018;102(12):2411-2420. https://doi.org/10.1094/PDIS-01-18-0077-RE
  16. Hattori M, Nagano Y, Shinohara Y, et al. Pattern of flower size variation along an altitudinal gradient differs between Impatiens textori and Impatiens noli-tangere. J Plant Interact. 2016;11(1):152-157. https://doi.org/10.1080/17429145.2016.1226437
  17. Lane CR, Beales PA, O'Neill TM, et al. First report of Impatiens downy mildew (Plasmopara obducens) in the UK. Plant Pathol. 2005;54(2):243-243. https://doi.org/10.1111/j.1365-3059.2005.01133.x
  18. Farr DF, Rossman AY. Fungal databases. ARS, USDA: Systematic Mycology and Microbiology Laboratory; 2020.
  19. Voglmayr H, Thines M. Phylogenetic relationships and nomenclature of Bremiella sphaerosperma (Chromista, Peronosporales). Mycotaxon. 2007;100:11-20.
  20. Shin HD, Choi YJ. A first check-list of Peronosporaceae from Korea. Mycotaxon. 2003;86:249-267.
  21. Shin HD, Choi YJ. Peronosporaceae of Korea. Suwon: National Institute of Agricultural Science and Technology; 2006.
  22. Choi YJ, Han JG, Park MJ, et al. Downy mildew of Impatiens balsamina and I. walleriana in Korea. Plant Pathol J. 2009;25(4):433-433. https://doi.org/10.5423/PPJ.2009.25.4.433
  23. Voglmayr H, Fatehi J, Constantinescu O. Revision of Plasmopara (Chromista, Peronosporales) parasitic on Geraniaceae. Mycol Res. 2006;110(6):633-645. https://doi.org/10.1016/j.mycres.2006.03.005
  24. Constantinescu O, Thines M. Plasmopara halstedii is absent from Australia and New Zealand. Pol Bot J. 2010;55:293-298.
  25. Thines M. Recent outbreaks of downy mildew on grape ivy (Parthenocissus tricuspidata, Vitaceae) in Germany are caused by a new species of Plasmopara. Mycol Prog. 2011;10(4):415-422. https://doi.org/10.1007/s11557-010-0712-3
  26. Choi YJ, Kiss L, Vajna L, et al. Characterization of a Plasmopara species on Ambrosia artemisiifolia, and notes on P. halstedii, based on morphology and multiple gene phylogenies. Mycol Res. 2009;113(10):1127-1136. https://doi.org/10.1016/j.mycres.2009.07.010
  27. Yuan YM, Song Y, Geuten K, et al. Phylogeny and biogeography of Balsaminaceae inferred from ITS sequences. Taxon. 2004;53(2):391-403. https://doi.org/10.2307/4135617
  28. Choi YJ, Beakes G, Glockling S, et al. Towards a universal barcode of oomycetes - a comparison of the cox1 and cox2 loci. Mol Ecol Resour. 2015;15(6):1275-1288. https://doi.org/10.1111/1755-0998.12398
  29. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780. https://doi.org/10.1093/molbev/mst010
  30. Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics. 2008;9:212. https://doi.org/10.1186/1471-2105-9-212
  31. Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics. 2011;27(2):171-180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  32. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
  33. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  34. Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol. 2012;12(4):335-337. https://doi.org/10.1007/s13127-011-0056-0
  35. Voglmayr H, Riethmuller A, Goker M, et al. Phylogenetic relationships of Plasmopara, Bremia and other genera of downy mildew pathogens with pyriform haustoria based on Bayesian analysis of partial LSU rDNA sequence data. Mycol Res. 2004;108(9):1011-1024. https://doi.org/10.1017/S0953756204000954
  36. Choi YJ, Thines M, Runge F, et al. Evidence for high degrees of specialisation, evolutionary diversity, and morphological distinctiveness in the genus Bremia. Fungal Biol. 2011;115(2):102-111. https://doi.org/10.1016/j.funbio.2010.10.010
  37. Choi YJ, Hong SB, Shin HD. Extreme size and sequence variation in the ITS rDNA of Bremia lactucae. Mycopathologia. 2007;163(2):91-95. https://doi.org/10.1007/s11046-007-0092-7
  38. Park JH, Thines M, Lee HB, et al. Bremia polycephala and Bremia sawadae spp. nov. (Peronosporaceae; Oomycota), parasitic to Northeast Asian Asteraceae. Nova Hedw. 2018;107(3):303-314. https://doi.org/10.1127/nova_hedwigia/2018/0474
  39. Choi YJ, Thines M. Host jumps and radiation, not co-divergence drives diversification of obligate pathogens. A case study in downy mildews and Asteraceae. PLoS One. 2015;10(7):e0133655. https://doi.org/10.1371/journal.pone.0133655
  40. Choi YJ, Wong J, Runge F, et al. BrRxLR11 - a new phylogenetic marker with high resolution in the downy mildew genus Bremia and related genera. Mycol Prog. 2017;16(2):185-190. https://doi.org/10.1007/s11557-016-1258-9
  41. Choi YJ, Park JH, Lee J, et al. Bremia itoana (Oomycota, Peronosporales), a specialized downy mildew pathogen on an East Asian plant, Crepidiastrum sonchifolium (Asteraceae). Mycobiology. 2018;46(4):416-420. https://doi.org/10.1080/12298093.2018.1547485
  42. Choi YJ, Hong SB, Shin HD. Diversity of the Hyaloperonospora parasitica complex from core brassicaceous hosts based on ITS rDNA sequences. Mycol Res. 2003;107(11):1314-1322. https://doi.org/10.1017/S0953756203008578
  43. Voglmayr H, Choi YJ, Shin HD. Multigene phylogeny, taxonomy and reclassification of Hyaloperonospora on Cardamine. Mycol Prog. 2014;13(1):131-144. https://doi.org/10.1007/s11557-013-0900-z
  44. Voglmayr H, Goker M. Morphology and phylogeny of Hyaloperonospora erophilae and H. praecox sp. nov., two downy mildew species cooccurring on Draba verna sensu lato. Mycol Progress. 2011;10(3):283-292. https://doi.org/10.1007/s11557-010-0699-9
  45. Choi YJ, Shin HD, Voglmayr H. Reclassification of two Peronospora species parasitic on Draba in Hyaloperonospora based on morphological and molecular phylogenetic data. Mycopathologia. 2011;171(2):151-159. https://doi.org/10.1007/s11046-010-9340-3
  46. Goker M, Voglmayr H, Garcia-Blazquez G, et al. Species delimitation in downy mildews: the case of Hyaloperonospora in the light of nuclear ribosomal ITS and LSU sequences. Mycol Res. 2009;113(3):308-325. https://doi.org/10.1016/j.mycres.2008.11.006
  47. Goker M, Riethmuller A, Voglmayr H, et al. Phylogeny of Hyaloperonospora based on nuclear ribosomal internal transcribed spacer sequences. Mycol Prog. 2004;3(2):83-94. https://doi.org/10.1007/s11557-006-0079-7
  48. Lee JS, Lee HB, Shin HD, et al. Diversity, phylogeny, and host-specialization of Hyaloperonospora species in Korea. Mycobiology. 2017;45(3):139-149. https://doi.org/10.5941/MYCO.2017.45.3.139
  49. Choi YJ, Denchev CM, Shin HD. Morphological and molecular analyses support the existence of host-specific Peronospora species infecting Chenopodium. Mycopathologia. 2008;165(3):155-164. https://doi.org/10.1007/s11046-007-9087-7
  50. Belbahri L, Calmin G, Pawlowski J, et al. Phylogenetic analysis and real time PCR detection of a presumbably undescribed Peronospora species on sweet basil and sage. Mycol Res. 2005;109(11):1276-1287. https://doi.org/10.1017/S0953756205003928
  51. Spring O, Voglmayr H, Riethmuller A, et al. Characterization of a Plasmopara isolate from Helianthus × laetiflorus based on cross infection, morphological, fatty acids and molecular phylogenetic data. Mycol Prog. 2003;2(3):163-170. https://doi.org/10.1007/s11557-006-0054-3
  52. Komjati H, Walcz I, Viranyi F, et al. Characteristics of a Plasmopara angustiterminalis isolate from Xanthium strumarium. Eur J Plant Pathol. 2007;119(4):421-428. https://doi.org/10.1007/s10658-007-9178-9
  53. Duarte LL, Choi YJ, Soares DJ, et al. Plasmopara invertifolia sp. nov. causing downy mildew on Helichrysum bracteatum (Asteraceae). Mycol Prog. 2014;13(2):285-289. https://doi.org/10.1007/s11557-013-0913-7
  54. Ling L. Host index of the parasitic fungi of Szechwan, China. 1948.
  55. Tai FL. Sylloge fungorum sinicorum. Peking: Science Press; 1979.
  56. Ito S. Mycological Flora of Japan. Tokyo: Yokendo; 1936.
  57. Thines M. Characterisation and phylogeny of repeated elements giving rise to exceptional length of ITS2 in several downy mildew genera (Peronosporaceae). Fungal Genet Biol. 2007;44(3):199-207. https://doi.org/10.1016/j.fgb.2006.08.002
  58. Thines M. An evolutionary framework for host shifts-jumping ships for survival. New Phytol. 2019;224(2):605-617. https://doi.org/10.1111/nph.16092

Cited by

  1. Analysis of digitized herbarium records and community science observations provides a glimpse of downy mildew species diversity of North America, reveals potentially undescribed species, and documents vol.55, 2020, https://doi.org/10.1016/j.funeco.2021.101126