DOI QR코드

DOI QR Code

Acoustic responses of natural fibre reinforced nanocomposite structure using multiphysics approach and experimental validation

  • 투고 : 2020.02.18
  • 심사 : 2020.09.25
  • 발행 : 2020.11.25

초록

In this article, the acoustic responses of free vibrated natural fibre-reinforced polymer nanocomposite structure have been investigated first time with the help of commercial package (ANSYS) using the multiphysical modelling approach. The sound relevant data of the polymeric structure is obtained by varying weight fractions of the natural nanofibre within the composite. Firstly, the structural frequencies are obtained through a simulation model prepared in ANSYS and solved through the static structural analysis module. Further, the corresponding sound data within a certain range of frequencies are evaluated by modelling the medium through the boundary element steps with adequate coupling between structure and fluid via LMS Virtual Lab. The simulation model validity has been established by comparing the frequency and sound responses with published results. In addition, sets of experimentation are carried out for the eigenvalue and the sound pressure level for different weight fractions of natural fibre and compared with own simulation data. The experimental frequencies are obtained using own impact type vibration analyzer and recorded through LABVIEW support software. Similarly, the noise data due to the harmonically excited vibrating plate are recorded through the available Array microphone (40 PH and serial no: 190569). The numerical results and subsequent experimental comparison are indicating the comprehensiveness of the presently derived simulation model. Finally, the effects of structural design parameters (thickness ratio, aspect ratio and boundary conditions) on the acoustic behaviour of the natural-fibre reinforced nanocomposite are computed using the present multiphysical model and highlighted the inferences.

키워드

과제정보

The authors of the article are thankful to Prof. M. Rajesh, Department of Design and Automation, School of Mechanical Engineering, VIT University, Vellore 632014, TN, India for providing access to LMS Virtual. Lab.

참고문헌

  1. Abdul-Razzak, A.A. and Haido, J.H. (2007), "Free vibration analysis of rectangular plates using higher order finite layer method", AL-Rafidain Eng. J., 15(3), 19-32.
  2. Abdul-Razzak, A.A. and Haido, J.H. (2008), "Forced vibration analysis of rectagular plates using higher order finite layer method", AL-Rafidain Eng. J., 16(5), 43-56.
  3. Abdul-Razzak, A.A. and Mohammed Ali, A.A. (2011), "Influence of cracked concrete models on the nonlinear analysis of high strength steel fibre reinforced concrete corbels", Compos. Struct., 93(9), 2277-2287. https://doi.org/10.1016/j.compstruct.2011.03.016.
  4. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, Int. J., 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  5. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, Int. J., 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  6. Alabduljabbar, H., Haido, J.H., Alyousef, R., Yousif, S.T., McConnell, J., Wakil, K. and Jermsittiparsert, K. (2020), "Prediction of the flexural behavior of corroded concrete beams using combined method", Structures, 25, 1000-1008. https://doi.org/10.1016/j.istruc.2020.03.057.
  7. Ali, A., Rajakumar, C. and Yunus, S.M. (1995), "Advances in acoustic eigenvalue analysis using boundary element method", Comput. Struct., 56(5), 837-847. https://doi.org/10.1016/0045-7949(95)00012-6.
  8. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  9. Anbukarasi, K. and Kalaiselvam, S. (2015), "Study of effect of fibre volume and dimension on mechanical, thermal, and water absorption behaviour of luffa reinforced epoxy composites", Mater. Des., 66, 321-330. https://doi.org/10.1016/j.matdes.2014.10.078.
  10. Arrakhiz, F.Z., Achaby, M.E.I., Malha, M., Bensalah, M.O., Fassi-Fehri, O., Bouhfid R., Benmoussa, K. and Qaiss, A. (2013), "Mechanical and thermal properties of natural fibres reinforced polymer composites: Doum/low density polyethylene", Mater. Des., 43, 200-205. https://doi.org/10.1016/j.matdes.2012.06.056.
  11. Astley, R.J. (1985), "A finite element, wave envelope formulation for acoustical radiation in moving flows", J. Sound Vib., 103(4), 471-485. https://doi.org/10.1016/S0022-460X(85)80016-X.
  12. Atalla, N. and Sgard, F. (2015), Finite Element and Boundary Methods in Structural, Acoustics and Vibration, CRC Press, New York, USA. https://doi.org/10.1201/b18366.
  13. Atalla, N., Nicolas, J. and Gauthier, C. (1996), "Acoustic radiation of an unbaffled vibrating plate with general elastic boundary conditions", J. Acoust. Soc. Am., 99(3), 1484-1494. https://doi.org/10.1121/1.414727.
  14. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, Int. J., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  15. Beakou, A., Ntenga, R., Lepetit, J., Ateba, J.A. and Ayina, L.O. (2008), "Physico-chemical and microstructural characterization of Rhectophyllum camerunense plant fibre", Compos. Part A Appl. Sci. Manuf., 39(1), 67-74. https://doi.org/10.1016/j.compositesa.2007.09.002.
  16. Belaadi, A., Bezazi, A., Bourchak, M. and Scarpa, F. (2013), "Tensile static and fatigue behaviour of sisal fibres", Mater. Des., 46, 76-83. https://doi.org/10.1016/j.matdes.2012.09.048.
  17. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., Int. J., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  18. Berardi, U. and Iannace, G. (2015), "Acoustic characterization of natural fibres for sound absorption applications", Build. Environ., 94(2), 840-852. https://doi.org/10.1016/j.buildenv.2015.05.029.
  19. Bert, C.W. and Malik, M. (1995), "Free vibration characteristics of symmetric cross-ply laminated plates: A semi-analytical differential quadrature analysis", Comput. Mech., 95, 2514-2519. https://doi.org/10.1007/978-3-642-79654-8_417.
  20. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, Int. J., 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  21. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., Int. J., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  22. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
  23. Cook, R.D., Malkus, D.S. and Plesha, M.E. (2000), Concepts and Applications of Finite Element Analysis, John Willy and Sons, Singapore.
  24. Dayo, A.Q., Gao, B.C., Wang, J., Liu, W.B., Derradji, M., Shah, A.H. and Babar, A.A. (2017), "Natural hemp fibre reinforced polybenzoxazine composites: curing behavior, mechanical and thermal properties", Compos. Sci. Technol., 144, 114-124. https://doi.org/10.1016/j.compscitech.2017.03.024.
  25. Demir, H., Atikler, U., Balkose, D. and Tihminlioglu, F. (2006), "The effect of fibre surface treatments on the tensile and water sorption properties of polypropylene - luffa fibre composites", Compos. Part A Appl. Sci. Manuf., 37(3), 447-456. https://doi.org/10.1016/j.compositesa.2005.05.036.
  26. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, Int. J., 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  27. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using FSDT", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  28. Erosy, S. and Kucuk, H. (2009), "Investigation of industrial tea-leaf waste material for its sound absorption properties", Appl. Acoust., 70, 215-220. https://doi.org/10.1016/j.apacoust.2007.12.005.
  29. Everstine, G.C. and Henderson, F.M. (1990), "Coupled finite element/boundary element approach for fluid-structure interaction", J. Acoust. Soc. India, 87(5), 1938-1947. https://doi.org/10.1121/1.399320.
  30. Ganapathi, M. and Kalyani, A., Mondal, B. and Prakash, T. (2009), "Free vibration analysis of simply supported composite laminated panels", Compos. Struct., 90(1), 100-103. https://doi.org/10.1016/j.compstruct.2009.02.003.
  31. Gibson, R.F. (2000), "Modal vibration response measurements for characterization of composite materials and structures", Compos. Sci. Technol., 60(15), 2769-2780. https://doi.org/10.1016/S0266-3538(00)00092-0.
  32. Haido, J.H. (2020), "Flexural behavior of basalt fiber reinforced concrete beams: Finite element simulation with new constitutive relationships", Structures, 27, 1876-1889. https://doi.org/10.1016/j.istruc.2020.08.005.
  33. Hosseini Fouladi, M., Jailani, M.N.M., Ayub, M. and Leman, Z.A. (2010), "Utilization of coir fibre in multilayer acoustic absorption panel", Appl. Acoust., 71(3), 241-249. https://doi.org/10.1016/j.apacoust.2009.09.003.
  34. Jayamani, E., Hamdan, S., Rahman, M.R., Heng, S.K. and Bin Bakri, M.K. (2014), "Processing and characterization of Epoxy/Luffa Composites: Investigation on chemical treatment of fibres on mechanical and acoustical properties", Acoust. Absorb., 9(3), 5542-5556.
  35. Jayamani, E., Hamdan, S., Bakri Bin, M.K., Soon Kok, H., Rahman, M.R. and Kakar, A. (2016), "Analysis of natural fibre polymer composites: Effects of alkaline treatment on sound absorption", J. Reinf. Plast. Compos., 35(9), 703-711. https://doi.org/10.1177/0731684415620046.
  36. Jeyaraj, P. (2010), "Vibroacoustic behavior of an isotropic plate with arbitrarily varying thickness", Eur. J. Mech A/Solids, 29(6), 1088-1094. https://doi.org/10.1016/j.euromechsol.2010.05.009.
  37. Joshi, S.V., Drzal, L.T., Mohanty, A.K. and Arora, S. (2004), "Are natural fibre composites environmentally superior to glass fibre reinforced composites?", Compos. Part A Appl. Sci. Manuf., 35(3), 371-376. https://doi.org/10.1016/j.compositesa.2003.09.016.
  38. Junge, M., Brunner, D. and Gaul, L. (2011), "Solution of FE-BE coupled eigenvalue problems for the prediction of the vibroacoustic behavior of ship-like structures", Int. J. Numer. Methods Eng., 87, 664-676. https://doi.org/10.1002/nme.3124.
  39. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A. and Al-Osta, M. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, Int. J., 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  40. Kant, T. and Swaminathan, K. (2001), "Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories", J. Sound Vib., 241(2), 319-327. https://doi.org/10.1006/jsvi.2000.3232
  41. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., Int. J., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  42. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019b), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  43. Karami, B., Janghorban, M. and Tounsi, A. (2020), "Novel study on functionally graded anisotropic doubly curved nanoshells", Eur. Phys. J. Plus, 135(1), 103. https://doi.org/10.1140/epjp/s13360-019-00079-y.
  44. Khdeir, A.A. and Reddy, J.N. (1999), "Free vibrations of laminated composite plates using second-order shear deformation theory", Comput. Struct., 71(6), 617-626. https://doi.org/10.1016/S0045-7949(98)00301-0.
  45. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2020), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 36(3), 807-821. https://doi.org/10.1007/s00366-019-00732-1.
  46. Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020), "Torsional dynamic response of viscoelastic SWCNT subjected to linear and harmonic torques with general boundary conditions via Eringen's nonlocal differential model", Eur. Phys. J. Plus, 135(2), 183. https://doi.org/10.1140/epjp/s13360-020-00207-z.
  47. Kong, Q., He, X., Shu, L. and Miao, M.S. (2017), "Ofloxacin adsorption by activated carbon derived from luffa sponge: Kinetic, isotherm, and thermodynamic analyses", Process Saf. Environ. Prot., 112, 254-264. https://doi.org/10.1016/j.psep.2017.05.011.
  48. Koruk, H. and Genc, G. (2015), "Investigation of the acoustic properties of bio luffa fibre and composite materials", Mater. Lett., 157, 166-168. https://doi.org/10.1016/j.matlet.2015.05.071.
  49. Kucuk, M. and Korkmaz, Y. (2012), "The effect of physical parameters on sound absorption properties of natural fibre mixed nonwoven composites", Text. Res. J., 82(20), 2043-2053. https://doi.org/10.1177/0040517512441987.
  50. Kumar, B.R., Ganesan, N. and Sethuraman, R. (2010), "Vibroacoustic analysis of composite elliptic disc with various orthotropic properties", J. Compos. Mater., 44(10), 1179-1200. https://doi.org/10.1177/0021998309349016.
  51. Kumar, K.S., Siva, I., Jeyaraj, P., Jappes, J.T.W., Amico, S.C. and Rajini, N. (2014), "Synergy of fibre length and content on free vibration and damping behavior of natural fibre reinforced polyester composite beams", Mater. Des., 56, 379-386. https://doi.org/10.1016/j.matdes.2013.11.039.
  52. Li, S. and Li, X. (2008), "The effects of distributed masses on acoustic radiation behavior of plates", Appl. Acoust., 69(3), 272-279. https://doi.org/10.1016/j.apacoust.2006.11.004.
  53. Liew, K.M. (2003), "Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method", Comput. Methods Appl. Mech. Eng., 192(19), 2203-2222. https://doi.org/10.1016/S0045-7825(03)00238-X.
  54. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., Int. J., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  55. Meyer, W.L., Bell, W.A., Zinn, B.T. and Stallybrass, M.P. (1978), "Boundary integral solutions of three dimensional acoustic radiation problems", J. Sound Vib., 59(2), 245-262. https://doi.org/10.1016/0022-460X(78)90504-7.
  56. Rajesh, M. and Pitchaimani, J. (2017), "Experimental investigation on buckling and free vibration behavior of woven natural fibre fabric composite under axial compression" Compos. Struct., 163, 302-311. https://doi.org/10.1016/j.compstruct.2016.12.046.
  57. Nowak, L.J. and Zielinski, T.G. (2015), "Determination of the free-field acoustic radiation characteristics of the vibrating plate structures with arbitrary boundary conditions", J. Vib. Acoust., 137, 51001. https://doi.org/10.1115/1.4030214.
  58. Ohlrich, M. and Hugin, C.T. (2004), "On the influence of boundary constraints and angled baffle arrangements on sound radiation from rectangular plates", J. Sound Vib., 277(1-2), 405-418. https://doi.org/10.1016/j.jsv.2003.11.038.
  59. Park, J., Mongeau, L. and Siegmund, T. (2003), "Influence of support properties on the sound radiated from the vibrations of rectangular plates", J. Sound Vib., 264(4), 775-794. https://doi.org/10.1016/S0022-460X(02)01215-4.
  60. Peters, H., Kessissoglou, N. and Marburg, S. (2014), "Modal decomposition of exterior acoustic-structure interaction", J. Acoust. Soc. Am., 135(5), 2668-2677. https://doi.org/10.1121/1.4796114.
  61. Petrone, G., D'Alessandro, V., Franco, F. and De Rosa, S. (2014), "Numerical and experimental investigations on the acoustic power radiated by aluminium foam sandwich panels", Compos. Struct., 118, 170-177. https://doi.org/10.1016/j.compstruct.2014.07.031.
  62. Prabhakaran, S., Krishnaraj, V., Kumar, M.S. and Zitoune, R. (2014), "Sound and vibration damping of flax fibre reinforced composites", Procedia Eng., 97, 573-581. https://doi.org/10.1016/j.proeng.2014.12.285.
  63. Putra, A. and Thompson, D.J. (2010), "Sound radiation from rectangular baffled and unbaffled plates", Appl. Acoust., 71(12), 1113-1125. https://doi.org/10.1016/j.apacoust.2010.06.009.
  64. Putra, A., Abdullah, Y., Efendy, H., Farid, W.M., Ayob, M.R. and Py, S.M. (2013), "Utilizing sugarcane wasted fibres as a sustainable acoustic absorber", Proceedings of Malaysian University Confrence on Engineering and Technology Part 2-Mechanical and Manufacturing Engineering, Hang Tuah Jaya, Malaysia, September.
  65. Rajini, N., Jappes, J.W., Rajakarunakaran, S. and Jeyaraj, P. (2013), "Dynamic mechanical analysis and free vibration behavior in chemical modifications of coconut sheath/nano-clay reinforced hybrid polyester composite", J. Compos. Mater., 47(24), 3105-3121. https://doi.org/10.1177/0021998312462618.
  66. Sahla, M., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., Int. J., 33(5), 663-679. https://doi.org/https://doi.org/10.12989/scs.2019.33.5.663.
  67. Seddeq, H.S., Aly, M.N., Marwa A.A. and Elshakankery, M.H. (2012), "Investigation on sound absorption properties for recycled fibrous materials", J. Ind. Text., 43(1), 56-73. https://doi.org/10.1177/1528083712446956.
  68. Senthilkumar, K., Saba, N., Chandrasekar, M., Jawaid, M., Rajini, N., Alothman, O.Y. and Siengchin, S. (2019), "Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites", Constr. Build. Mater., 195, 423-431. https://doi.org/10.1016/j.conbuildmat.2018.11.081.
  69. Sgriccia, N., Hawley, M.C. and Misra, M. (2008), "Characterization of natural fibre surfaces and natural fibre composites", Compos. Part A Appl. Sci. Manuf., 39(10), 1632-1637. https://doi.org/10.1016/j.compositesa.2008.07.007.
  70. Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020), "Identification of the most influencing parameters on the properties of corroded concrete beams using an adaptive neuro-fuzzy inference system (ANFIS)", Steel Compos. Struct., Int. J., 34(1), 155-170. https://doi.org/https://doi.org/10.12989/scs.2020.34.1.155.
  71. Shen, J., Xie, Y.M., Huang, X., Zhou, S. and Ruan, D. (2012), "Mechanical properties of luffa sponge", J. Mech. Behav. Biomed. Mater., 15, 141-152. https://doi.org/10.1016/j.jmbbm.2012.07.004.
  72. Shen, J., Xie, Y.M., Huang, X., Zhou, S. and Ruan, D. (2013), "Behaviour of luffa sponge material under dynamic loading", Int. J. Impact Eng., 57, 17-26. https://doi.org/10.1016/j.ijimpeng.2013.01.004.
  73. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., Int. J., 34(4), 511-524. http://dx.doi.org/10.12989/scs.2020.34.4.511.
  74. Tournour, M. and Atalla, N. (1998), "Vibroacoustic behavior of an elastic box using state-of-the-art FEM-BEM approaches", Noise Control Eng. J., 46(3), 83-90. https://doi.org/10.3397/1.2828460.
  75. Wang, K.F. and Wang, B.L. (2018), "A mechanical degradation model for bidirectional natural fibre reinforced composites under hydrothermal ageing and applying in buckling and vibration analysis", Compos. Struct., 206, 594-600. https://doi.org/10.1016/j.compstruct.2018.08.063.
  76. Wielage, B., Lampke, T., Utschick, H. and Soergel, F. (2003), "Processing of natural-fibre reinforced polymers and the resulting dynamic-mechanical properties", J. Mater. Process. Technol., 139(1-3), 140-146. https://doi.org/10.1016/S0924-0136(03)00195-X.
  77. Xu, C., Zhang, X., Haido, J.H., Mehrabi, P., Shariati, A., Mohamad, E.T., Hoang, N. and Wakil, K. (2019), "Using genetic algorithms method for the paramount design of reinforced concrete structures", Struct. Eng. Mech., Int. J., 71(5), 503-513. https://doi.org/10.12989/sem.2019.71.5.503.
  78. Yin, X.W. and Cui, H.F. (2009), "Acoustic radiation from a laminated composite plate excited by longitudinal and transverse mechanical drives", J. Appl. Mech., 76(4), 44501-44505. https://doi.org/10.1115/1.3086429.