Abstract
Photovoltaic (PV) power system prices have been steadily dropping in recent years due to their mass production and advances in relevant technology. Crystalline silicon (c-Si wafers) account for the largest share of the price of solar cells; reducing the thickness of these wafers is an essential part of increasing the price competitiveness of PV power systems. However, reducing the thickness of c-Si wafers is challenging; typically, phenomena such as bowing and cracking are encountered. While several approaches to address the bowing phenomenon of the c-Si solar cells exist, the only method to study the crack phenomenon (related to the strength of the c-Si solar cells) is the bending test method. Moreover, studies on determining the strength properties of the solar cells have focused largely on c-Si wafers, while those on the strength properties of front and rear-side electrodes and SiNx, the other components of c-Si solar cells, are scarce. In this study, we analyzed the strength characteristics of each layer of c-Si solar cells. The strength characteristics of the sawing mark direction produced during the production of c-Si wafers were also tested. Experiments were conducted using a 4bending tester for a specially manufactured c-Si solar cell. The results indicate that the back side electrode is the main component that experienced bowing, while the front electrode was the primary component regulating the strength of the c-Si solar cell.