DOI QR코드

DOI QR Code

Experimental Analysis of Interactions Among Saprotrophic Fungi from A Phosphorous-Poor Desert Oasis in the Chihuahuan Desert

  • Marini-Macouzet, Constanza (Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico) ;
  • Munoz, Luis (Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico) ;
  • Gonzalez-Rubio, Aldo (Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico) ;
  • Eguiarte, Luis E. (Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico) ;
  • Souza, Valeria (Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico) ;
  • Velez, Patricia (Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico)
  • Received : 2019.11.11
  • Accepted : 2020.06.22
  • Published : 2020.10.31

Abstract

Fungal ecological interactions play a key role in structuring community assemblages. These associations may involve both antagonistic and synergistic relationships, which are commonly influenced by abiotic factors such as nutrient conditions. However, information for extreme, oligotrophic systems remain poor. Herein, interactions among key members of the aquatic transient fungal community (Aspergillus niger, Cladosporium sp., and Coprinellus micaceus) of a low-nutrient freshwater system in the Cuatro Ci enegas Basin, Mexico were studied. Pairwise interaction bioassays were explored in vitro under different nutrient conditions, including carbohydrates-rich, carbohydrates and amino peptides-rich, and low nutrients. Our results indicated that antagonistic patterns prevail among the studied taxa. However, nutrient-dependent changes were observed in Cladosporium sp. shifting to synergy under carbohydrates-rich conditions, suggesting changes in the fungal community composition as a result of nutrient enrichment. Remarkably, our findings contrast with previous work demonstrating mainly synergistic interactions between our tested fungal isolates and co-occurring autochthonous bacteria (Aeromonas spp. and Vibrio sp.) under low-nutrient conditions. This observation may indicate that bacteria and fungi exhibit distinct community-level responses, driven by nutrient conditions. This contributes to the knowledge of fungal community dynamics and interspecific interactions in an oligotrophic ecosystem, highlighting the relevance of nutrient-based shifts and antagonistic interactions in ecosystem dynamics.

Keywords

References

  1. Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev. 2003;67(4):491-502. https://doi.org/10.1128/MMBR.67.4.491-502.2003
  2. Aly AH, Debbab A, Proksch P. Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol. 2011;90(6):1829-1845. https://doi.org/10.1007/s00253-011-3270-y
  3. Cordero OX, Datta MS. Microbial interactions and community assembly at microscales. Curr Opin Microbiol. 2016;31:227-234. https://doi.org/10.1016/j.mib.2016.03.015
  4. Mitri S, Richard Foster K. The genotypic view of social interactions in microbial communities. Annu Rev Genet. 2013;47:247-273. https://doi.org/10.1146/annurev-genet-111212-133307
  5. Kawai T, Tokeshi M. Testing the facilitation-competition paradigm under the stress-gradient hypothesis: decoupling multiple stress factors. Proc Biol Sci. 2007;274(1624):2503-2508.
  6. Choudhury AJA, Trevelyn PMJ, Boswell GP. A mathematical model of nutrient influence on fungal competition. J Theor Biol. 2017;438:9-20. https://doi.org/10.1016/j.jtbi.2017.11.006
  7. Hiscox J, Clarkson G, Savoury M, et al. Effects of pre-colonisation and temperature on interspecific fungal interactions in wood. Fungal Ecol. 2016;21:32-42. https://doi.org/10.1016/j.funeco.2016.01.011
  8. Grattan RM, Suberkropp K. Effects of nutrient enrichment on yellow poplar leaf decomposition and fungal activity in streams. J N Am Benthol Soc. 2001;20(1):33-43. https://doi.org/10.2307/1468186
  9. Gulis V, Suberkropp K. Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability. Aquat Microb Ecol. 2003;30:149-157. https://doi.org/10.3354/ame030149
  10. Lohberger A, Spangenberg JE, Ventura Y, et al. Effect of organic carbon and nitrogen on the interactions of Morchella spp. and bacteria dispersing on their mycelium. Front Microbiol. 2019;10:124. https://doi.org/10.3389/fmicb.2019.00124
  11. Deveau A, Bonito G, Uehling J, et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42(3):335-352. https://doi.org/10.1093/femsre/fuy008
  12. Velez P, Espinosa-Asuar L, Figueroa M, et al. Nutrient dependent cross-kingdom interactions: microfungi and bacteria from an oligotrophic desert oasis. Front Microbiol. 2018;9:1755. https://doi.org/10.3389/fmicb.2018.01755
  13. Mckee JW, Jones NW, Long LE. Stratigraphy and provenance of strata along the San Marcos fault, central Coahuila, Mexico. Geol Soc Am Bull. 1990;102(5):593-561. https://doi.org/10.1130/0016-7606(1990)102<0593:SAPOSA>2.3.CO;2
  14. Elser JJ, Schampel JH, Garcia-Pichel F, et al. Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshwater Biol. 2005;50(11):1808-1825. https://doi.org/10.1111/j.1365-2427.2005.01451.x
  15. Lee ZM, Steger L, Corman JR, et al. Response of a stoichiometrically imbalanced ecosystem to manipulation of nutrient supplies and ratios. PloS One. 2015;10(4):e0123949. https://doi.org/10.1371/journal.pone.0123949
  16. Boddy L. Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol. 2000;31(3):185-194. https://doi.org/10.1111/j.1574-6941.2000.tb00683.x
  17. Hiscox J, O'leary J, Boddy L. Fungus wars: basidiomycete battles in wood decay. Stud Mycol. 2018;89:117-124. https://doi.org/10.1016/j.simyco.2018.02.003
  18. Hiscox J, Savoury M, Vaughan IP, et al. Antagonistic fungal interactions influence carbon dioxide evolution from decomposing wood. Fungal Ecol. 2015;14:24-32. https://doi.org/10.1016/j.funeco.2014.11.001
  19. Keller NP, TurneR G, Bennett JW. Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol. 2005;3(12):937-947. https://doi.org/10.1038/nrmicro1286
  20. Chatterjee S, Kuang Y, Splivallo R, et al. Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: fungal biomass, diversity of secreted metabolites and fumonisin production. BMC Microbiol. 2016;16:83. https://doi.org/10.1186/s12866-016-0698-3
  21. Ingham RE, Trofymow JA, Ingham ER, et al. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr. 1985;55(1):119-140. https://doi.org/10.2307/1942528
  22. Meyer ER. Late-quarternary paleoecology of the Cuatro Cienegas Basin, Coahuila, Mexico. Ecology. 1973;54(5):982-995. https://doi.org/10.2307/1935565
  23. Wolaver BD, Sharp JM, Jr Tidwell VC, et al. An integrative approach to sustainable groundwater and associated groundwater-dependent system management in arid karst aquifers: Cuatrocienegas Basin, Mexico. International Association Hydrogeologists. 2008.
  24. CONAGUA. Normales climatologicas por estacion. Ciudad de Mexico: Servicio Meteorologico Nacional, CONAGUA; 2015.
  25. Reddi GS, Rao AS. Antagonism of soil actinomycetes to some soil-borne plant pathogenic fungi. Indian Phytopathol. 1971;24:649-657.
  26. Rothrock CS, Gottlieb D. Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Can J Microbiol. 1984;30(12):1440-1447. https://doi.org/10.1139/m84-230
  27. Crawford DL, Lynch JM, Whipps JM, et al. Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol. 1993;59(11):3899-38905. https://doi.org/10.1128/AEM.59.11.3899-3905.1993
  28. Chamberlain K, Crawford DL. In vitro and in vivo antagonism of pathogenic turfgrass fungi by Streptomyces hygroscopicus strains YCED9 and WYE53. J Ind Microbiol Biotechnol. 1999;23(1):641-646. https://doi.org/10.1038/sj.jim.2900671
  29. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675. https://doi.org/10.1038/nmeth.2089
  30. Mishra VK. In vitro antagonism of Trichoderma species against Pythium aphanidermatum. J Phytol. 2010;2:28-35.
  31. Asthana A, Shearer CA. Antagonistic activity of Pseudohalonectria and Ophioceras. Mycologia. 1990;82(5):554-561. https://doi.org/10.1080/00275514.1990.12025928
  32. Hammer O, Harper DA, Ryan PD. PAST-PAlaeontological Statistics. 2001. http://palaeo-electronica.org/2001_1/past/pastrog/past.pdf
  33. Skidmore AM, Dickinson CH. Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi. Trans Brit Mycol Soc. 1976;66(1):57-64. https://doi.org/10.1016/S0007-1536(76)80092-7
  34. Shearer CA, Zare-Maivan H. In vitro hyphal interactions among wood- and leaf-inhabiting Ascomycetes and Fungi Imperfecti from freshwater habitats. Mycologia. 1988;80(1):31-37. https://doi.org/10.1080/00275514.1988.12025494
  35. Yuen TK, Hyde KD, Hodgkiss IJ. Interspecific interactions among tropical and subtropical freshwater fungi. Microb Ecol. 1999;37(4):257-262. https://doi.org/10.1007/s002489900151
  36. Miller JD, Jones EBG, Moharir YE, et al. Colonization of wood blocks by marine fungi in Langstone Harbour. Bot Mar. 1985;28:251-257.
  37. Strongman DB, Miller JD, Calhoun L, et al. The biochemical basis for interference competition among some lignicolous marine fungi. Bot Mar. 1987;30:21-26.
  38. Perez-Gutierrez RA, Lopez-Ramirez V, Islas A, et al. Antagonism influences assembly of a Bacillus guild in a local community and is depicted as a food-chain network. ISME J. 2013;7(3):487-497. https://doi.org/10.1038/ismej.2012.119
  39. Ponce-Soto GY, Aguirre-Von-Wobeser E, Eguiarte LE, et al. Enrichment experiment changes microbial interactions in an ultra-oligotrophic environment. Front Microbiol. 2015;6:246. https://doi.org/10.3389/fmicb.2015.00246
  40. Zapien-Campos R, Olmedo-Alvarez G, Santillan M. Antagonistic interactions are sufficient to explain self-assemblage of bacterial communities in a homogeneous environment: a computational modeling approach. Front Microbiol. 2015;6:489. https://doi.org/10.3389/fmicb.2015.00489
  41. Van Valen L. A new evolutionary law. Evol Theory. 1973;1:1-30.
  42. Gause CF. The struggle for existence. Baltimore: Williams & Wilkins; 1971.
  43. Pandey RR, Arora DK, Dubey RC. Antagonistic interactions between fungal pathogens and phylloplane fungi of guava. Mycopathologia. 1993;124(1):31-39. https://doi.org/10.1007/BF01103054
  44. Moron-Rios A, Gomez-Cornelio S, Ortega-Morales BO, et al. Interactions between abundant fungal species influence the fungal community assemblage on limestone. PloS One. 2017;12(12):e0188443. https://doi.org/10.1371/journal.pone.0188443
  45. Barbosa MA, Rehn KG, Menezes M, et al. Antagonism of Trichoderma species on Cladosporium herbarum and their enzimatic characterization. Braz J Microbiol. 2001;32:98-104.
  46. Mille-Lindblom C, Fischer H, Tranvik L. Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos. 2006;113(2):233-242. https://doi.org/10.1111/j.2006.0030-1299.14337.x
  47. Baschien C, Rode G, Bockelmann U, et al. Interactions between hyphosphere-associated bacteria and the fungus Cladosporium herbarum on aquatic leaf litter. Microb Ecol. 2009;58(3):642-650. https://doi.org/10.1007/s00248-009-9528-6
  48. Palumbo JD, Baker JL, Mahoney NE. Microbial ecology isolation of bacterial antagonists of Aspergillus flavus from almonds. Microb Ecol. 2006;52(1):45-52. https://doi.org/10.1007/s00248-006-9096-y
  49. Ranjbariyan A, Shams-Ghahfarokhi M, Kalantari S, et al. Molecular identification of antagonistic bacteria from Tehran soils and evaluation of their inhibitory activities toward pathogenic fungi. Iran J Microbiol. 2011;3(3):140-146.
  50. Saber W, Ghanem KM, El-Hersh MS. Rock phosphate solubilization by two isolates of Aspergillus niger and Penicillium sp. and their promotion to mung bean plants. Res J Microbiol. 2009;4(7):235-250. https://doi.org/10.3923/jm.2009.235.250
  51. Melikyan LR. Antifungal activity of several xylotrophic coprinoid mushrooms against filamentous fungi. Electron J Nat Sci. 2015;25:12-15.
  52. Heilmann-Clausen J, Boddy L. Inhibition and stimulation effects in communities of wood decay fungi: exudates from colonized wood influence growth by other species. Microb Ecol. 2005;49(3):399-406. https://doi.org/10.1007/s00248-004-0240-2
  53. Miles LA, Lopera CA, Gonzalez S, et al. Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. BioControl. 2012;57(5):697-710. https://doi.org/10.1007/s10526-012-9442-6
  54. Booth C. Chapter II. Fungal culture media. In: Booth C, editor. Methods in microbiology. London: Academic Press; 1971.
  55. Holmgren M, Scheffer M. Strong facilitation in mild environments: the stress gradient hypothesis revisited. J Ecol. 2010;98(6):1269-1275. https://doi.org/10.1111/j.1365-2745.2010.01709.x
  56. Contreras-Balderas S. Environmental impacts in Cuatro Cienegas, Coahuila, Mexico: a commentary. J Arizona-Nevada Acad Sci. 1984;19:85-88.
  57. Souza V, Espinosa-Asuar L, Escalante AE, Eguiarte LE, et al. An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci USA. 2006;103(17):6565-6570. https://doi.org/10.1073/pnas.0601434103

Cited by

  1. Impact of crop cultivation, nitrogen and fulvic acid on soil fungal community structure in salt-affected alluvial fluvo-aquic soil vol.464, pp.1, 2021, https://doi.org/10.1007/s11104-021-04979-w