참고문헌
- Dubey RK, Tripathi V, Prabha R, et al. Methods for exploring soil microbial diversity. In: Unravelling the Soil Microbiome. SpringerBriefs in Environmental Science. Cham (Switzerland): Springer; 2020. p. 23-32.
- Lasota J, Blonska E, Lyszczarz S, et al. Forest humus type governs heavy metal accumulation in specific organic matter fractions. Water, Air & Soil pollution. 2020;231:80. https://doi.org/10.1007/s11270-020-4450-0
- Kumar BL, Gopal DS. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech. 2015;5(6):867-876. https://doi.org/10.1007/s13205-015-0293-6
- Nyein WW, Kim DH, Chun SC. Soil microbial population in relation to farming system. Korean Society of Mycobiology Spring Conferences 2017.
- Trump C. Korean natural farming on large scale science and economics. Paper presented at the 1st International Symposium of Natural Science Farming Seoul; 2016; Seoul, South Korea.
- Cai M, Yao J, Yang H, et al. Aerobic biodegradation process of petroleum and pathway of main compounds in water flooding well of Dagang oil field. Bioresour Technol. 2013;144:100-106. https://doi.org/10.1016/j.biortech.2013.06.082
- Piccolo A. The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agron. 2002;75:57-134. https://doi.org/10.1016/S0065-2113(02)75003-7
- Insam H. Microorganisms and humus in soils. In: Piccolo A, editor. Humic substances in terrestrial ecosystems. Elsevier Science BV; 1996. p. 265-292. DOI:10.1016/B978-044481516-3/50007-4
- Braga RM, Dourado MN, Araujo WL. Microbial interactions: ecology in a molecular perspective. Brazil J Microbiol. 2016;47:86-98. https://doi.org/10.1016/j.bjm.2016.10.005
- Choudhary D. Plant growth-promotion (PGP) activities and molecular characterization of rhizobacterial strains isolated from soybean (Glycine max L. Merril) plants against charcoal rot pathogen, Macrophomina phaseolina. Biotechnol Lett. 2011;33(11):2287-2295. https://doi.org/10.1007/s10529-011-0699-0
- Beauregard PB, Chai Y, Vlamakis H, et al. Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci USA. 2013;110(17):E1621-E30. https://doi.org/10.1073/pnas.1218984110
- Kang SM, Radhakrishnan R, Lee IJ. Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World J Microbiol Biotechnol. 2015;31(10):1517-1527. https://doi.org/10.1007/s11274-015-1896-0
- Singla J, Krattinger S, Wrigley CW, et al. Biotic stress resistance genes in wheat. In: Wrigley C, Corke H, Faubion J, editors. Encyclopedia of food grains. Waltham (MA): Academic Press; 2016. p. 388-392.
- Ghazanfar MU, Raza M, Raza W, et al. Trichoderma as potential biocontrol agent, its exploitation in agriculture: a review. Plant Protect. 2018;25:2.
- Conrath U, Beckers GJ, Langenbach CJ, et al. Priming for enhanced defense. Annu Rev Phytopathol. 2015;53:97-119. https://doi.org/10.1146/annurev-phyto-080614-120132
- Schwyn B, Neilands J. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160(1):47-56. https://doi.org/10.1016/0003-2697(87)90612-9
- Ji SH, Gururani MA, Chun SC. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res. 2014;169(1):83-98. https://doi.org/10.1016/j.micres.2013.06.003
- Milagres AM, Machuca A, Napoleao D. Detection of siderophore production from several fungi and bacteria by a modification of Chrome Azurol S (CAS) agar plate assay. J Microbiol Methods. 1999;37(1):1-6. https://doi.org/10.1016/S0167-7012(99)00028-7
- Mehta S, Nautiyal CS. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol. 2001;43(1):51-56. https://doi.org/10.1007/s002840010259
- Rodriguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 1999;17(4-5):319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
- Chiemela FA, Serafin LN, Ricardo LI, et al. Isolation and characterization of indigenous microorganism (IMO) from Ifugao bamboo (Phyllostachys Aurea) forest. Int J Sci Res. 2013;4:1319-1324.
- Weisburg WG, Barns SM, Pelletier DA, et al. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol Res. 1991;173(2):697-703. https://doi.org/10.1128/JB.173.2.697-703.1991
- Murphy D, Sparling G, Fillery IR. Stratification of microbial biomass C and N and gross N mineralisation with soil depth in two contrasting Western Australian agricultural soils. Soil Res. 1998;36(1):45-56. https://doi.org/10.1071/S97045
- Ha TN. Using Trichoderma species for biological control of plant pathogens in Vietnam. J Int Soc Southeast Asian Agric Sci. 2010;16:17-21.
- Montealegre JR, Reyes R, Perez LM, et al. Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electron J Biotechnol. 2003;6(2):115-127.
- Lee KJ, Kamala-Kannan S, Sub HS, et al. Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J Microbiol Biotechnol. 2008;24(7):1139-1145. https://doi.org/10.1007/s11274-007-9585-2
- Elamvazhuthi P, Subramanian M. Antagonistic activity of actinomycetes from Jeypore paddy soils against selective phytopathogenic fungi. J Modern Biotechnol. 2013;2:66-72.
- Glick BR. Plant growth promoting bacteria: mechanisms and applications. Scientifica. 2012;2012:963401. https://doi.org/10.6064/2012/963401
- Haas D, Defago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005;3(4):307-319. https://doi.org/10.1038/nrmicro1129
- Wahyudi AT, Astuti RP, Widyawati A, et al. Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J Microbiol Antimicrobials. 2011;3:34-40.
- Joseph B, Ranjan Patra R, Lawrence R. Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod. 2012;1:141-152.
- Dimkpa C, Svatos A, Merten D, et al. Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol. 2008;54(3):163-172. https://doi.org/10.1139/W07-130
- Banerjee S, Palit R, Sengupta C, et al. Stress induced phosphate solubilization by Arthrobacter Sp.and Bacillus sp. isolated from tomato rhizosphere. Aust J Crop Sci. 2010;4:378.
- Chaiharn M, Lumyong S. Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Northern Thailand. World J Microbiol Biotechnol. 2009;25(2):305-314. https://doi.org/10.1007/s11274-008-9892-2
- Ahmad R, Naveed M, Aslam M, et al. Economizing the use of nitrogen fertilizer in wheat production through enriched compost. Renew Agric Food Syst. 2008;23(03):243-249. https://doi.org/10.1017/S1742170508002299
- Son HJ, Park GT, Cha MS, et al. Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour Technol. 2006;97(2):204-210. https://doi.org/10.1016/j.biortech.2005.02.021
- Chandra S, Choure K, Dubey RC, et al. Rhizosphere competent Mesorhizobiumloti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol. 2007;38(1):124-130. https://doi.org/10.1590/S1517-83822007000100026
- Ryu CM, Hu CH, Reddy M, et al. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 2003;160(2):413-420. https://doi.org/10.1046/j.1469-8137.2003.00883.x
- Okon Y, Labandera-Gonzalez C. Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem. 1994;26(12):1591-1601. https://doi.org/10.1016/0038-0717(94)90311-5
- Glick BR. The enhancement of plant growth by free-living bacteria. Can J Microbiol. 1995;41(2):109-117. https://doi.org/10.1139/m95-015
- Gururani MA, Upadhyaya CP, Baskar V, et al. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul. 2013;32(2):245-258. https://doi.org/10.1007/s00344-012-9292-6
피인용 문헌
- Phospholipid fatty acids in soil-drawbacks and future prospects vol.58, pp.1, 2020, https://doi.org/10.1007/s00374-021-01613-w