DOI QR코드

DOI QR Code

Comparison of Soil Higher Fungal Communities between Dead and Living Abies koreana in Mt. Halla, the Republic of Korea

  • Kim, Chang Sun (Forest Biodiversity Division, Korea National Arboretum) ;
  • Jo, Jong Won (Forest Biodiversity Division, Korea National Arboretum) ;
  • Lee, Hyen (Forest Biodiversity Division, Korea National Arboretum) ;
  • Kwag, Young-Nam (Forest Biodiversity Division, Korea National Arboretum) ;
  • Cho, Sung Eun (Forest Biodiversity Division, Korea National Arboretum) ;
  • Oh, Seung Hwan (Forest Biodiversity Division, Korea National Arboretum)
  • Received : 2020.04.01
  • Accepted : 2020.08.13
  • Published : 2020.10.31

Abstract

To improve our understanding of the relationship between soil higher fungi (belonging to Ascomycota and Basidiomycota) and Abies koreana, we surveyed A. koreana soil fungal communities in a forest in Mt. Halla, Jeju Island, Korea by next-generation sequencing (Illumina Miseq). To confirm the soil higher fungal communities, we collected two types of soils from a defined plot: soils with dead (AKDTs) and living A. koreana (AKLTs), respectively. Soil fungi were classified into 2 phyla, 19 classes, 64 orders, 133 families, 195 genera, and 229 OTUs (895,705 sequence reads). Nonmetric multidimensional scaling (NMDS) showed significantly different soil higher fungal communities between AKDTs and AKLTs (p < .05). In addition, the saprophyte composition was significantly affected by A. koreana status (p < .05). The proportion of the mycorrhizal Clavulina spp. was different between soils with AKDTs and AKLTs, suggesting that Clavulina spp. may be a crucial soil fungal species influencing A. koreana. This study will lead to a better understanding of the ecological status of A. koreana in Mt. Halla. In addition, this study could be useful for the conservation and management of A. koreana habitats.

Keywords

References

  1. Rinnan R, Baath E. Differential utilization of carbon substrates by bacteria and fungi in Tundra soil. Appl Environ Microbiol. 2009;75(11):3611-3620. https://doi.org/10.1128/AEM.02865-08
  2. Allen MF, Swenson W, Querejeta JI, et al. Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu Rev Phytopathol. 2003;41:271-303. https://doi.org/10.1146/annurev.phyto.41.052002.095518
  3. Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. 3rd ed. New York (NY): Academic Press.
  4. Hacskaylo E. Mycorrhiza: the ultimate in reciprocal parasitism? BioScience. 1972;22(10):577-582. https://doi.org/10.2307/1296203
  5. Kwak M, Hong JK, Park JH, Lee BY, et al. Genetic assessment of Abies koreana (Pinaceae), the endangered Korean fir, and conservation implications. Conserv Genet. 2017;18(5):1165-1176. https://doi.org/10.1007/s10592-017-0968-0
  6. Kim NS, Lee HC. A study on changes and distributions of Korean fir in sub-alpine zone. J Korean Environ Restor Technol. 2013;16(5):49-57.
  7. Ahn US, Kim DS, Yun YS, et al. The inference about the cause of death of Korean Fir in Mt. Halla through the analysis of spatial dying pattern - Proposing the possibility of excess soil moisture by climate changes. Kor J Agri for Met. 2018;21:1-28.
  8. Kang SJ. Regeneration process of subalpine coniferous forest in Mt. Jiri. J Ecol Environ. 1984;7:185-193.
  9. Park WK, Seo JW. A dentroclimatic analysis on Abies koreana in Cheonwang-bong area of Mt. Chiri Korea. Kor J Quat Res. 1999;13:25-33.
  10. Lee CS, Cho HJ. Structure and dynamics of Abies koreana Wilson community in Mt. Gaya. Kor J Ecol. 1993;16:75-91.
  11. Koo KA, Park WK, Kong WS. Dendrochronological analysis of Abies koreana W. at Mt. Halla, Korea: effects of climate change on the growths. Kor J Ecol. 2001;24:281-288.
  12. Koh JG, Kim DS, Kim JG, et al. Growth dynamics of Korean fir in Mt. Halla. Hallasan Res Rep. 2015;14:9-25.
  13. Sim MY, Eo JK, Eom AH. Diversity of Ectomycorrhizal fungi of Abies koreana at Mt. Halla. Kor J Mycol. 2009;37(2):134-138. https://doi.org/10.4489/KJM.2009.37.2.134
  14. Lee JE, Eom AH. Ectomycorrhizal fungal diversity on Abies koreana and Taxus cuspidata at two altitudes in Mt. Halla. Kor J Mycol. 2019;47:199-208. https://doi.org/10.4489/KJM.20190024
  15. Jumpponen A, Jones KL, Mattox JD, et al. Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol Ecol. 2010;19:41-53. https://doi.org/10.1111/j.1365-294X.2009.04483.x
  16. Lim YW, Kim BK, Kim C, et al. Assessment of soil fungal communities using pyrosequencing. J Microbiol. 2010;48(3):284-289. https://doi.org/10.1007/s12275-010-9369-5
  17. Kim CS, Nam JW, Jo JW, et al. Studies on seasonal dynamics of soil-higher fungal communities in Mongolian oak-dominant Gwangneung forest in Korea. J Microbiol. 2016;54(1):14-22. https://doi.org/10.1007/s12275-016-5521-1
  18. Kim CS, Han SK, Nam JW, et al. Fungal communities in a Korean red pine stand, Gwangneung forest. Kor J Asia Pac Biodivers. 2017;10(4):559-572. https://doi.org/10.1016/j.japb.2017.08.002
  19. Buee M, Courty PE, Mignot D, et al. Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal community. Soil Biol Biochem. 2007;39(8):1947-1955. https://doi.org/10.1016/j.soilbio.2007.02.016
  20. Petrosino JF, Highlander S, Luna RA, et al. Metagenomic pyrosequencing and microbial identification. Clin Chem. 2009;55(5):856-866. https://doi.org/10.1373/clinchem.2008.107565
  21. Nagano Y, Nagahama T, Hatada Y, et al. Fungal diversity in deep-sea sediments - the presence of novel fungal groups. Fungal Ecol. 2010;3(4):316-325. https://doi.org/10.1016/j.funeco.2010.01.002
  22. Voriskova J, Brabcova V, Cajthaml T, et al. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol. 2014;201(1):269-278. https://doi.org/10.1111/nph.12481
  23. Martin JP, Haider K. Biodegradation of C-labeled model and cornstalk lignins, phenols, model phenolase humic polymers, and fungal melanins as influenced by a readily available carbon source and soil. Appl Environ Microbiol. 1979;38(2):283-289. https://doi.org/10.1128/AEM.38.2.283-289.1979
  24. Amelung W, Lobe I, Du Preez CC. Du Preez CC. Fate of microbial residues in sandy soils of the South African highveld as influenced by prolonged arable cropping. Eur J Soil Sci. 2002;53(1):29-35. https://doi.org/10.1046/j.1365-2389.2002.00428.x
  25. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and application. New York (NY): Academic Press; 1990. p. 315-322.
  26. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335-336. https://doi.org/10.1038/nmeth.f.303
  27. Koljalg U, Nilsson RH, Abarenkov K, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22(21):5271-5277. https://doi.org/10.1111/mec.12481
  28. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996-998. https://doi.org/10.1038/nmeth.2604
  29. Oksanen J, Blanchet FG, Friendly M, et al. 2019. Vegan: community ecology package. Available from: https://cran.r-project.org/web/packages/vegan/vegan.pdf(internet)
  30. Allington WB, Chamberlain DW. Brown stem rot of soybean. Phytopathology. 1948;38:793-802.
  31. Di Marco S, Calzarano F, Osti F, et al. Pathogenicity of fungi associated with a decay of kiwifruit. Austral Plant Pathol. 2004;33(3):337-342. https://doi.org/10.1071/AP04024
  32. Travadon R, Lawrence DP, Rooney-Latham S, et al. Cadophora species associated with wooddecay of grapevine in North America. Fungal Biol. 2015;119(1):53-66. https://doi.org/10.1016/j.funbio.2014.11.002
  33. Blanchett RA, Held BW, Jurgens JA, et al. Wood-destroying soft rot fungi in the historic expedition huts of Antarctica. Appl Environ Microbiol. 2004;70(3):1328-1335. https://doi.org/10.1128/AEM.70.3.1328-1335.2004
  34. Tedersoo L, Sanchez-Ramirez S, Koljalg U, et al. High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Divers. 2018;90:135-159. https://doi.org/10.1007/s13225-018-0401-0
  35. Branco S, Ree RH. Serpentine soils do not limit mycorrhizal fungal diversity. PLoS One. 2010;5(7):e11757. https://doi.org/10.1371/journal.pone.0011757
  36. Gao Q, Yang ZL. Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the eastern Himalaya. Mycorrhiza. 2010;20(4):281-287. https://doi.org/10.1007/s00572-009-0287-5
  37. Orlovich DA, Draffin SJ, Daly RA, et al. Piracy in the high trees: ectomycorrhizal fungi from an aerial 'canopy soil' microhabitat. Mycologia. 2013;105(1):52-60. https://doi.org/10.3852/11-307
  38. Kuhdorf K, Munzenberger B, Begerow D, et al. Leotia cf. lubrica forms arbutoid mycorrhiza with Comarostaphylis arbutoides (Ericaceae). Mycorhiza. 2015;25(2):109-120. https://doi.org/10.1007/s00572-014-0590-7
  39. Arguelles-Moyao A, Garibay-Orijel R, Marquez-Valdelamar LM, et al. Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa. Mycorrhiza. 2017;27(1):53-65. https://doi.org/10.1007/s00572-016-0724-1
  40. Unuk T, Martinovic Finzgar D, Sibanc N, et al. Root-associated fungal communities from two phenologically contrasting silver fir (Abies alba Mill.) groups of trees. Front Plant Sci. 2019;10:214. https://doi.org/10.3389/fpls.2019.00214
  41. Rudawska M, Pietras M, Smutek I, et al. Ectomycorrhizal fungal assemblages of Abies alba Mill. outside its native range in Poland. Mycorrhiza. 2016;26(1):57-65. https://doi.org/10.1007/s00572-015-0646-3
  42. Tian J, Qiao Y, Wu B, et al. Ecological succession pattern of fungal community in soil along a retreating glacier. Front Microbiol. 2017;8:1028. https://doi.org/10.3389/fmicb.2017.01028
  43. Lakhanpal TN. Ectomycorrhiza-an overview. In: Mukerji, KG, Chamola BP, Singh J, editors. Mycorrhizal biology. New York (NY): Kluwer Academic/Plenum; 2000. p.101-118.
  44. Wazny R, Kowalski S. Ectomycorrhizal fungal communities of silver-fir seedlings regenerating in fir stands and larch forecrips. Trees. 2017;31(3):929-939. https://doi.org/10.1007/s00468-016-1518-y
  45. Reverchon F, Ortega-Larrocea MP, Perez-Moreno J, et al. Changes in community structure of ectomycorrhizal fungi associated with Pinus montezumae across a volcanic soil chronosequence at Sierra Chichinautzin, Mexico. Can J for Res. 2010;40(6):1165-1174. https://doi.org/10.1139/X10-062

Cited by

  1. Fungal Community Analyses of Endophytic Fungi from Two Oak Species, Quercus mongolica and Quercus serrata, in Korea vol.49, pp.4, 2021, https://doi.org/10.1080/12298093.2021.1948175