참고문헌
- Walter, M.G., E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori and N.S. Lewis, Solar water splitting cells. Chem. Rev. 110 (2010). pp. 6446-6473. https://doi.org/10.1021/cr1002326
- Su, J., T. Minegishi, M. Katayama and K. Domen, Photoelectrochemical hydrogen evolution from water on a surface modified CdTe thin film electrode under simulated sunlight. J. Mater. Chem. A 5 (2017). pp. 4486-4492. https://doi.org/10.1039/C6TA10490H
- Kang, D., J.L. Young, H. Lim, W.E. Klein, H. Chen, Y. Xi, B. Gai, T.G. Deutsch and J. Yoon, Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat. Energy 2 (2017). p. 17043. https://doi.org/10.1038/nenergy.2017.43
- Alqahtani, M., S. Sathasivam, F. Cui, L. Steier, X. Xia, C. Blackman, E. Kim, H. Shin, M. Benamara and Y.I. Mazur, Heteroepitaxy of GaP on silicon for efficient and cost-effective photoelectrochemical water splitting. J. Mater. Chem. A 7 (2019). pp. 8550-8558. https://doi.org/10.1039/C9TA01328H
- Lee, M.H., K. Takei, J. Zhang, R. Kapadia, M. Zheng, Y.Z. Chen, J. Nah, T.S. Matthews, Y.L. Chueh and J.W. Ager, p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. Angew. Chem. Int. Ed. Engl. 51 (2012). pp. 10760-10764. https://doi.org/10.1002/anie.201203174
-
Bagal, I.V., N.R. Chodankar, M.A. Hassan, A. Waseem, M.A. Johar, D.-H. Kim and S.-W. Ryu,
$Cu_2O$ as an emerging photocathode for solar water splitting-a status review. Int. J. Hydrog. Energy 44 (2019). pp. 21351-21378. https://doi.org/10.1016/j.ijhydene.2019.06.184 -
Liyanaarachchi, U., C. Fernando, K. Foo, U. Hashim and M. Maza, Structural and Photoelectrochemical Properties of p-
$Cu_2O$ Nano-Surfaces Prepared by Oxidizing Copper Sheets with a Slow Heating Rate Exhibiting the Highest Photocurrent and$H_2$ Evaluation Rate. Chin. J. Phys. 53 (2015). pp. 143-160. -
Tawfik, W.Z., M.A. Hassan, M.A. Johar, S.-W. Ryu and J.K. Lee, Highly conversion efficiency of solar water splitting over p-
$Cu_2O$ /ZnO photocatalyst grown on a metallic substrate. J. Catal. 374 (2019). pp. 276-283. https://doi.org/10.1016/j.jcat.2019.04.045 -
John, S. and S.C. Roy, CuO/
$Cu_2O$ nanoflake/nanowire heterostructure photocathode with enhanced surface area for photoelectrochemical solar energy conversion. Appl. Surf. Sci. 509 (2020). p. 144703. https://doi.org/10.1016/j.apsusc.2019.144703 -
Lim, Y.-F., C.S. Chua, C.J.J. Lee and D. Chi, Sol-gel deposited
$Cu_2O$ and CuO thin films for photocatalytic water splitting. Phys. Chem. Chem. Phys. 16 (2014). pp. 25928-25934. https://doi.org/10.1039/C4CP03241A -
Xue, J., Q. Shen, W. Liang, X. Liu, L. Bian and B. Xu, Preparation and formation mechanism of smooth and uniform
$Cu_2O$ thin films by electrodeposition method. Surf. Coat. Technol. 216 (2013). pp. 166-171. https://doi.org/10.1016/j.surfcoat.2012.11.051 -
Kim, M., S. Yoon, H. Jung, K.-J. Lee, D.-C. Lim, I.-S. Kim, B. Yoo and J.-H. Lim, The influence of polarity of electrodeposited
$Cu_2O$ thin films on the photoelectrochemical performance. Jpn. J. Appl. Phys. 53 (2014). p. 08NJ01. https://doi.org/10.7567/JJAP.53.08NJ01 - Golden, T.D., M.G. Shumsky, Y. Zhou, R.A. VanderWerf, R.A. Van Leeuwen and J.A. Switzer, Electrochemical deposition of copper (I) oxide films. Chem. Mater. 8 (1996). pp. 2499-2504. https://doi.org/10.1021/cm9602095
-
Paracchino, A., J.C. Brauer, J.-E. Moser, E. Thimsen and M. Graetzel, Synthesis and characterization of high-photoactivity electrodeposited
$Cu_2O$ solar absorber by photoelectrochemistry and ultrafast spectroscopy. The Journal of Physical Chemistry C 116 (2012). pp. 7341-7350. https://doi.org/10.1021/jp301176y - Zhang, Z., W. Hu, Y. Deng, C. Zhong, H. Wang, Y. Wu and L. Liu, The effect of complexing agents on the oriented growth of electrodeposited microcrystalline cuprous oxide film. Materials Research Bulletin 47 (2012). pp. 2561-2565. https://doi.org/10.1016/j.materresbull.2012.04.146
-
Ho, J.-Y. and M.H. Huang, Synthesis of submicrometer-sized
$Cu_2O$ crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. The Journal of Physical Chemistry C 113 (2009). pp. 14159-14164. https://doi.org/10.1021/jp903928p -
Chen, T., A. Kitada, K. Fukami and K. Murase, Determination of Stability Constants of Copper (II)-Lactate Complexes in
$Cu_2O$ Electrodeposition Baths by UV-vis Absorption Spectra Factor Analysis. J. Electrochem. Soc. 166 (2019). p. D761. https://doi.org/10.1149/2.1231914jes - Zhou, Y. and J.A. Switzer, Galvanostatic electrodeposition and microstructure of copper (I) oxide film. Mater. Res. Innov. 2 (1998). pp. 22-27. https://doi.org/10.1007/s100190050056
-
Bohannan, E.W., L.-Y. Huang, F.S. Miller, M.G. Shumsky and J.A. Switzer, In situ electrochemical quartz crystal microbalance study of potential oscillations during the electrodeposition of Cu/
$Cu_2O$ layered nanostructures. Langmuir 15 (1999). pp. 813-818. https://doi.org/10.1021/la980825a -
Yang, Y., D. Xu, Q. Wu and P. Diao,
$Cu_2O$ /CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci. Rep. 6 (2016). pp. 1-13. https://doi.org/10.1038/s41598-016-0001-8 - Paracchino, A., V. Laporte, K. Sivula, M. Gratzel and E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10 (2011). pp. 456-461. https://doi.org/10.1038/nmat3017
- Yoon, S., J.-H. Lim and B. Yoo, Electrochemical synthesis of cuprous oxide on highly conducting metal micro-pillar arrays for water splitting. J. Alloys Compd. 677 (2016). pp. 66-71. https://doi.org/10.1016/j.jallcom.2016.03.183