DOI QR코드

DOI QR Code

Harmonic resonance analysis and stability improvement for grid-connected inverters

  • Xie, Bao (State Key Laboratory of Power Transmission Equipment, System Security and New Technology, Chongqing University) ;
  • Zhou, Lin (State Key Laboratory of Power Transmission Equipment, System Security and New Technology, Chongqing University) ;
  • Liu, Tiantian (State Grid Anhui Electric Power Corporation Maintenance Company) ;
  • Mao, Mingxuan (State Key Laboratory of Power Transmission Equipment, System Security and New Technology, Chongqing University)
  • Received : 2019.03.26
  • Accepted : 2019.09.06
  • Published : 2020.01.20

Abstract

The traditional dual-control-loop strategy is widely used in grid-connected inverters. However, due to uncertain grid conditions, a resonance phenomenon may arise in systems and grid current can be badly distorted. In addition, the systems themselves may be unstable. In this paper, an equivalent impedance model of a grid-connected inverter is established. Based on this, two concepts of circuit resonance and harmonic resonance are proposed. By using the Nyquist stability criterion, it is revealed that harmonic resonance is induced when system stability is decreased, and the harmonic amplification in the system is enhanced. Due to the fact that the dual-control-loop strategy has poor robustness against grid impedance variations, a linear quadratic regulator (LQR) based on full-state feedback is proposed in this paper. The design procedure for selecting the full-state feedback gain is presented. Finally, both simulation and experimental results are presented to verify the effectiveness of the proposed LQR controller.

Keywords

Acknowledgement

This work has been supported by the National Natural Science Foundation of China (Grant Nos. 51477021 and 51707026), China Postdoctoral Science Foundation (Grant No. 2018M643410), Chongqing Special Postdoctoral Science Foundation (Grant No. XmT2018033) and National "111" Project of China under Grant B808036.

References

  1. Yang, D., Ruan, X., Wu, H.: Impedance shaping of the grid-connected inverter with LCL filter to improve its adaptability to the weak grid condition. IEEE Trans Power Electron 29(11), 5795-5805 (2014) https://doi.org/10.1109/TPEL.2014.2300235
  2. Zhou, L., Zhou, X., Chen, Y., Lv, Z., He, Z., Wu, W., Yang, L., Yan, K., Luo, A., Guerrero, J.M.: Inverter-current- feedback resonance-suppression method for LCL-type DG system to reduce resonance-frequency offset and grid- inductance effect. IEEE Trans Ind Electron 65(9), 7036-7048 (2018) https://doi.org/10.1109/tie.2018.2795556
  3. Liserre, M., Blaabjerg, F., Hansen, S.: Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans Ind Appl 41(5), 1281-1291 (2005) https://doi.org/10.1109/TIA.2005.853373
  4. Said-Romdhane, M.B., Naouar, M.W., Slama-Belkhodja, I., Monmasson, E.: Robust active damping methods for LCL filter-based grid-connected converters. IEEE Trans Power Electron 32(9), 6739-6750 (2017) https://doi.org/10.1109/TPEL.2016.2626290
  5. Liserre, M., Teodorescu, R., Blaabjerg, F.: Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Trans Power Electron 21(1), 263-272 (2006) https://doi.org/10.1109/TPEL.2005.861185
  6. Zheng, C., Zhou, L., Yu, X., Li, B., Liu, J.: Online phase margin compensation for a grid-tied inverter to improve its robustness to grid impedance variation. IET Power Electron 9(4), 611-620 (2016) https://doi.org/10.1049/iet-pel.2015.0196
  7. Wang, X., Blaabjerg, F., Chen, Z.: Synthesis of variable harmonic impedance in inverter-interfaced distributed generation unit for harmonic damping throughout a distribution network. IEEE Trans Ind Appl 48(4), 1407-1417 (2012) https://doi.org/10.1109/TIA.2012.2199955
  8. Lukasz, H.K., Birte, L.O.K., Ole, H., Kim, H.J.: Resonance damping in array cable systems by wind turbine active filtering in large offshore wind power plants. IET Renew Power Gener 11(7), 1069-1077 (2017) https://doi.org/10.1049/iet-rpg.2016.0111
  9. Sun, J.: Impedance-based stability criterion for grid- connected inverters. IEEE Trans Power Electron 26(11), 3075-3078 (2011) https://doi.org/10.1109/TPEL.2011.2136439
  10. Cespedes, M., Sun, J.: Impedance modeling and analysis of grid connected voltage-source converters. IEEE Trans Power Electron 29(3), 1254-1261 (2014) https://doi.org/10.1109/TPEL.2013.2262473
  11. Turner, R., Walton, S., Duke, R.: A case study on the application of the nyquist stability criterion as applied to interconnected loads and sources on grids. IEEE Trans Ind Electron 60(7), 2740-2749 (2013) https://doi.org/10.1109/TIE.2012.2198031
  12. Wang, X.F., Blaabjerg, F., Liserre, M., Chen, Z., He, J.W., Li, Y.W.: An active damper for stabilizing power- electronics-based AC systems. IEEE Trans Power Electron 29(7), 3318-3329 (2014) https://doi.org/10.1109/TPEL.2013.2278716
  13. Chen, X., Zhang, Y., Wang, S., Chen, J., Gong, C.: Impedance-phased dynamic control method for grid- connected inverters in a weak grid. IEEE Trans Power Electron 32(1), 274-283 (2017) https://doi.org/10.1109/TPEL.2016.2533563
  14. Agorreta, J.L., Borrega, M., Lopez, J., Marroyo, L.: Modeling and control of N-paralleled grid-connected inverters with LCL filter coupled due to grid impedance in PV plants. IEEE Trans Power Electron 26(3), 270-285 (2011)
  15. Zhou, L., Yang, M., Liu, Q., Guo, K.: New control strategy for three-phase grid-connected LCL inverters without a phase-locked loop. J Power Electron 13(3), 487-493 (2013) https://doi.org/10.6113/JPE.2013.13.3.487
  16. Lu, M., Wang, X., Loh, P.C., Blaabjerg, F.: Resonance interaction of multi-parallel grid-connected inverters with LCL-filter. IEEE Trans Power Electron 32(2), 894-899 (2017) https://doi.org/10.1109/TPEL.2016.2585547
  17. Pan, D., Ruan, X., Bao, C., Li, W., Wang, X.: Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter. IEEE Trans Power Electron 29(7), 3414-3427 (2014) https://doi.org/10.1109/TPEL.2013.2279206
  18. Lu, M., Al-Durra, A., Muyeen, S.M., Leng, S., Loh, P.C., Blaabjerg, F.: Bench-marking of stability and robustness against grid impedance variation for lcl-filtered grid-interfacing inverters. IEEE Trans Power Electron 33(10), 9033-9046 (2018) https://doi.org/10.1109/tpel.2017.2784685
  19. Wang, J., Yan, J.D., Jiang, L., Zou, J.: Delay- dependent stability of single-loop controlled grid- connected inverters with LCL filters. IEEE Trans Power Electron 31(1), 743-757 (2016) https://doi.org/10.1109/TPEL.2015.2401612
  20. Lu XN, Liserre M, Sun K, Blaabjerg F, Teodorescu R, Huang L (2012) Resonance propagation of parallel-perated DC-AC converters with LCL filters. In: Proceedings of IEEE APEC, pp 877-884
  21. Cespedes M, Sun J (2011) Modeling and mitigation of harmonic resonance between wind turbines and the grid. In: Proc. IEEE ECCE, pp 2109-2116
  22. Wang, X., Blaabjerg, F., Loh, P.C.: Grid-current- feedback active damping for LCL resonance in grid- connected voltage-source converters. IEEE Trans Power Electron 31(1), 213-223 (2016) https://doi.org/10.1109/TPEL.2015.2411851
  23. He, J., Li, Y.W., Bosnjak, D., Harris, B.: Investigation and active damping of multiple resonances in a parallel- inverter-based microgrid. IEEE Trans Power Electron 28(1), 234-246 (2013) https://doi.org/10.1109/TPEL.2012.2195032
  24. He, J.W., Li, Y.W., Wang, R., Zhang, C.H.: Analysis and mitigation of resonance propagation in grid-connected and islanding microgrids. IEEE Trans Energy Convers 30(1), 70-81 (2015) https://doi.org/10.1109/TEC.2014.2332497
  25. Xie B, Zhou L, Zheng C, Zhang QJ (2018) Stability and resonance analysis and improved design of N-paralleled grid-connected PV inverters coupled due to grid impedance. In: Proceedings of IEEE APEC, pp 362-367
  26. Xie, B., Zhou, L., Mao, M.: Analysis of resonance and harmonic amplification for grid-connected inverters. IET Gener Transm Distrib 13(10), 1821-1828 (2019) https://doi.org/10.1049/iet-gtd.2018.6499
  27. D'Arco, S., Suul, J.A., Fosso, O.B.: Automatic tuning of cascaded controllers for power converters using eigenvalue parametric sensitivities. IEEE Trans Ind Appl 51(2), 1743-1753 (2015) https://doi.org/10.1109/TIA.2014.2354732
  28. Wang, Y., Li, W., He, X.: Precompensator for disturbance signal elimination in single-phase inverters with virtual vector control. IEEE J Emerg Sel Top Power Electron 7(1), 184-195 (2019) https://doi.org/10.1109/jestpe.2019.2892382
  29. Castilla, M., Miret, J., Matas, J., de Vicuna, L.G., Guerrero, J.M.: Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators. IEEE Trans Ind Electron 56(11), 4492-4501 (2009) https://doi.org/10.1109/TIE.2009.2017820
  30. Li X, Li H, Tang S, Zhang X (2016) Current control for the micro-grid connected inverter based on fuzzy control. In: Proceedings of iFUZZY, pp 1-5
  31. Du C, Zhou J, Ma Y (2015) Predictive current control of a current-source inverter with active damping method. In: Proceedings of IEEE ECCE, pp 1100-1104
  32. Chen, D., Zhang, J., Qian, Z.: An improved repetitive control scheme for grid-connected inverter with frequency-adaptive capability. IEEE Trans Ind Electron 60(2), 814-823 (2013) https://doi.org/10.1109/TIE.2012.2205364
  33. Li, Z., Zang, C., Zeng, P., Yu, H., Li, S., Bian, J.: Control of a grid-forming inverter based on sliding mode and mixed H2/H control. IEEE Trans Ind Electron 64(5), 3862-3872 (2017) https://doi.org/10.1109/TIE.2016.2636798
  34. Li, Z., Zang, C., Zeng, P., Yu, H., Li, S.: Fully distributed hierarchical control of parallel grid-supporting inverters in islanded AC microgrids. IEEE Trans Ind Informat 14(2), 679-690 (2018) https://doi.org/10.1109/tii.2017.2749424
  35. Yang, S., Lei, Q., Peng, F.Z., Qian, Z.: A robust control scheme for grid-connected voltage-source inverters. IEEE Trans Ind Electron 58(1), 202-212 (2011) https://doi.org/10.1109/TIE.2010.2045998
  36. Fu, X., Li, S.: Control of single-phase grid-connected converters with LCL filters using recurrent neural network and conventional control methods. IEEE Trans Power Electron 31(7), 5354-5364 (2016) https://doi.org/10.1109/TPEL.2015.2490200
  37. Khajehoddin, S.A., Ghartemani, M.K., Ebrahimi, M.: Optimal and systematic design of current controller for grid-connected inverters. IEEE J Emerg Sel Topics Power Electron 61(2), 812-824 (2018) https://doi.org/10.1109/JESTPE.2017.2737987
  38. Wu, E., Lehn, P.: Digital current control of a voltage source converter with active damping of LCL resonance. IEEE Trans Power Electron 21(5), 1364-1373 (2006) https://doi.org/10.1109/TPEL.2006.880271
  39. Shukla, A., Ghosh, A., Joshi, A.: State feedback control of multilevel inverters for DSTATCOM applications. IEEE Trans Power Del 22(4), 2409-2418 (2007) https://doi.org/10.1109/TPWRD.2007.905271
  40. Willems, J., Mareels, I.: A rigorous solution of the infinite time interval LQ problem with constant state tracking. Syst Control Lett 52(3-4), 289-296 (2004) https://doi.org/10.1016/j.sysconle.2004.01.001
  41. Krikelis, N., Papadopoulos, E.G.: An optimal design approach for tracking problems and its assessment against classical controllers. Int J Control 36(2), 249-265 (1982) https://doi.org/10.1080/00207178208932890
  42. Huerta, F., Pizarro, D., Cobreces, S., Rodriguez, F., Giron, C., Rodriguez, A.: LQG servo controller for the current control of LCL grid-connected voltage-source converters. IEEE Trans Ind Electron 59(11), 4272-4284 (2012) https://doi.org/10.1109/TIE.2011.2179273
  43. Bao, C., Ruan, X., Wang, X., Li, W., Pan, D., Weng, K.: Step-by-step controller design for LCL-type grid- connected inverter with capacitor-current-feedback active- damping. IEEE Trans Power Electron 29(3), 1239-1253 (2014) https://doi.org/10.1109/TPEL.2013.2262378
  44. Yepes, A.G., Freijedo, F.D., Oscar, L., Doval-Gandoy, J.: Analysis and design of resonant current controllers for voltage-source converters by means of nyquist diagrams and sensitivity function. IEEE Trans Ind Electron 58(11), 5231-5250 (2011) https://doi.org/10.1109/TIE.2011.2126535

Cited by

  1. Offset error compensation algorithm for grid voltage measurement of grid-connected single-phase inverters based on SRF-PLL vol.20, pp.3, 2020, https://doi.org/10.1007/s43236-020-00077-9
  2. Multi-objective visual design method of control system for synchronous motor drives vol.103, pp.6, 2020, https://doi.org/10.1007/s00202-021-01299-1