Acknowledgement
This work has been supported by the National Natural Science Foundation of China (Grant Nos. 51477021 and 51707026), China Postdoctoral Science Foundation (Grant No. 2018M643410), Chongqing Special Postdoctoral Science Foundation (Grant No. XmT2018033) and National "111" Project of China under Grant B808036.
References
- Yang, D., Ruan, X., Wu, H.: Impedance shaping of the grid-connected inverter with LCL filter to improve its adaptability to the weak grid condition. IEEE Trans Power Electron 29(11), 5795-5805 (2014) https://doi.org/10.1109/TPEL.2014.2300235
- Zhou, L., Zhou, X., Chen, Y., Lv, Z., He, Z., Wu, W., Yang, L., Yan, K., Luo, A., Guerrero, J.M.: Inverter-current- feedback resonance-suppression method for LCL-type DG system to reduce resonance-frequency offset and grid- inductance effect. IEEE Trans Ind Electron 65(9), 7036-7048 (2018) https://doi.org/10.1109/tie.2018.2795556
- Liserre, M., Blaabjerg, F., Hansen, S.: Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans Ind Appl 41(5), 1281-1291 (2005) https://doi.org/10.1109/TIA.2005.853373
- Said-Romdhane, M.B., Naouar, M.W., Slama-Belkhodja, I., Monmasson, E.: Robust active damping methods for LCL filter-based grid-connected converters. IEEE Trans Power Electron 32(9), 6739-6750 (2017) https://doi.org/10.1109/TPEL.2016.2626290
- Liserre, M., Teodorescu, R., Blaabjerg, F.: Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Trans Power Electron 21(1), 263-272 (2006) https://doi.org/10.1109/TPEL.2005.861185
- Zheng, C., Zhou, L., Yu, X., Li, B., Liu, J.: Online phase margin compensation for a grid-tied inverter to improve its robustness to grid impedance variation. IET Power Electron 9(4), 611-620 (2016) https://doi.org/10.1049/iet-pel.2015.0196
- Wang, X., Blaabjerg, F., Chen, Z.: Synthesis of variable harmonic impedance in inverter-interfaced distributed generation unit for harmonic damping throughout a distribution network. IEEE Trans Ind Appl 48(4), 1407-1417 (2012) https://doi.org/10.1109/TIA.2012.2199955
- Lukasz, H.K., Birte, L.O.K., Ole, H., Kim, H.J.: Resonance damping in array cable systems by wind turbine active filtering in large offshore wind power plants. IET Renew Power Gener 11(7), 1069-1077 (2017) https://doi.org/10.1049/iet-rpg.2016.0111
- Sun, J.: Impedance-based stability criterion for grid- connected inverters. IEEE Trans Power Electron 26(11), 3075-3078 (2011) https://doi.org/10.1109/TPEL.2011.2136439
- Cespedes, M., Sun, J.: Impedance modeling and analysis of grid connected voltage-source converters. IEEE Trans Power Electron 29(3), 1254-1261 (2014) https://doi.org/10.1109/TPEL.2013.2262473
- Turner, R., Walton, S., Duke, R.: A case study on the application of the nyquist stability criterion as applied to interconnected loads and sources on grids. IEEE Trans Ind Electron 60(7), 2740-2749 (2013) https://doi.org/10.1109/TIE.2012.2198031
- Wang, X.F., Blaabjerg, F., Liserre, M., Chen, Z., He, J.W., Li, Y.W.: An active damper for stabilizing power- electronics-based AC systems. IEEE Trans Power Electron 29(7), 3318-3329 (2014) https://doi.org/10.1109/TPEL.2013.2278716
- Chen, X., Zhang, Y., Wang, S., Chen, J., Gong, C.: Impedance-phased dynamic control method for grid- connected inverters in a weak grid. IEEE Trans Power Electron 32(1), 274-283 (2017) https://doi.org/10.1109/TPEL.2016.2533563
- Agorreta, J.L., Borrega, M., Lopez, J., Marroyo, L.: Modeling and control of N-paralleled grid-connected inverters with LCL filter coupled due to grid impedance in PV plants. IEEE Trans Power Electron 26(3), 270-285 (2011)
- Zhou, L., Yang, M., Liu, Q., Guo, K.: New control strategy for three-phase grid-connected LCL inverters without a phase-locked loop. J Power Electron 13(3), 487-493 (2013) https://doi.org/10.6113/JPE.2013.13.3.487
- Lu, M., Wang, X., Loh, P.C., Blaabjerg, F.: Resonance interaction of multi-parallel grid-connected inverters with LCL-filter. IEEE Trans Power Electron 32(2), 894-899 (2017) https://doi.org/10.1109/TPEL.2016.2585547
- Pan, D., Ruan, X., Bao, C., Li, W., Wang, X.: Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter. IEEE Trans Power Electron 29(7), 3414-3427 (2014) https://doi.org/10.1109/TPEL.2013.2279206
- Lu, M., Al-Durra, A., Muyeen, S.M., Leng, S., Loh, P.C., Blaabjerg, F.: Bench-marking of stability and robustness against grid impedance variation for lcl-filtered grid-interfacing inverters. IEEE Trans Power Electron 33(10), 9033-9046 (2018) https://doi.org/10.1109/tpel.2017.2784685
- Wang, J., Yan, J.D., Jiang, L., Zou, J.: Delay- dependent stability of single-loop controlled grid- connected inverters with LCL filters. IEEE Trans Power Electron 31(1), 743-757 (2016) https://doi.org/10.1109/TPEL.2015.2401612
- Lu XN, Liserre M, Sun K, Blaabjerg F, Teodorescu R, Huang L (2012) Resonance propagation of parallel-perated DC-AC converters with LCL filters. In: Proceedings of IEEE APEC, pp 877-884
- Cespedes M, Sun J (2011) Modeling and mitigation of harmonic resonance between wind turbines and the grid. In: Proc. IEEE ECCE, pp 2109-2116
- Wang, X., Blaabjerg, F., Loh, P.C.: Grid-current- feedback active damping for LCL resonance in grid- connected voltage-source converters. IEEE Trans Power Electron 31(1), 213-223 (2016) https://doi.org/10.1109/TPEL.2015.2411851
- He, J., Li, Y.W., Bosnjak, D., Harris, B.: Investigation and active damping of multiple resonances in a parallel- inverter-based microgrid. IEEE Trans Power Electron 28(1), 234-246 (2013) https://doi.org/10.1109/TPEL.2012.2195032
- He, J.W., Li, Y.W., Wang, R., Zhang, C.H.: Analysis and mitigation of resonance propagation in grid-connected and islanding microgrids. IEEE Trans Energy Convers 30(1), 70-81 (2015) https://doi.org/10.1109/TEC.2014.2332497
- Xie B, Zhou L, Zheng C, Zhang QJ (2018) Stability and resonance analysis and improved design of N-paralleled grid-connected PV inverters coupled due to grid impedance. In: Proceedings of IEEE APEC, pp 362-367
- Xie, B., Zhou, L., Mao, M.: Analysis of resonance and harmonic amplification for grid-connected inverters. IET Gener Transm Distrib 13(10), 1821-1828 (2019) https://doi.org/10.1049/iet-gtd.2018.6499
- D'Arco, S., Suul, J.A., Fosso, O.B.: Automatic tuning of cascaded controllers for power converters using eigenvalue parametric sensitivities. IEEE Trans Ind Appl 51(2), 1743-1753 (2015) https://doi.org/10.1109/TIA.2014.2354732
- Wang, Y., Li, W., He, X.: Precompensator for disturbance signal elimination in single-phase inverters with virtual vector control. IEEE J Emerg Sel Top Power Electron 7(1), 184-195 (2019) https://doi.org/10.1109/jestpe.2019.2892382
- Castilla, M., Miret, J., Matas, J., de Vicuna, L.G., Guerrero, J.M.: Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators. IEEE Trans Ind Electron 56(11), 4492-4501 (2009) https://doi.org/10.1109/TIE.2009.2017820
- Li X, Li H, Tang S, Zhang X (2016) Current control for the micro-grid connected inverter based on fuzzy control. In: Proceedings of iFUZZY, pp 1-5
- Du C, Zhou J, Ma Y (2015) Predictive current control of a current-source inverter with active damping method. In: Proceedings of IEEE ECCE, pp 1100-1104
- Chen, D., Zhang, J., Qian, Z.: An improved repetitive control scheme for grid-connected inverter with frequency-adaptive capability. IEEE Trans Ind Electron 60(2), 814-823 (2013) https://doi.org/10.1109/TIE.2012.2205364
- Li, Z., Zang, C., Zeng, P., Yu, H., Li, S., Bian, J.: Control of a grid-forming inverter based on sliding mode and mixed H2/H∞ control. IEEE Trans Ind Electron 64(5), 3862-3872 (2017) https://doi.org/10.1109/TIE.2016.2636798
- Li, Z., Zang, C., Zeng, P., Yu, H., Li, S.: Fully distributed hierarchical control of parallel grid-supporting inverters in islanded AC microgrids. IEEE Trans Ind Informat 14(2), 679-690 (2018) https://doi.org/10.1109/tii.2017.2749424
- Yang, S., Lei, Q., Peng, F.Z., Qian, Z.: A robust control scheme for grid-connected voltage-source inverters. IEEE Trans Ind Electron 58(1), 202-212 (2011) https://doi.org/10.1109/TIE.2010.2045998
- Fu, X., Li, S.: Control of single-phase grid-connected converters with LCL filters using recurrent neural network and conventional control methods. IEEE Trans Power Electron 31(7), 5354-5364 (2016) https://doi.org/10.1109/TPEL.2015.2490200
- Khajehoddin, S.A., Ghartemani, M.K., Ebrahimi, M.: Optimal and systematic design of current controller for grid-connected inverters. IEEE J Emerg Sel Topics Power Electron 61(2), 812-824 (2018) https://doi.org/10.1109/JESTPE.2017.2737987
- Wu, E., Lehn, P.: Digital current control of a voltage source converter with active damping of LCL resonance. IEEE Trans Power Electron 21(5), 1364-1373 (2006) https://doi.org/10.1109/TPEL.2006.880271
- Shukla, A., Ghosh, A., Joshi, A.: State feedback control of multilevel inverters for DSTATCOM applications. IEEE Trans Power Del 22(4), 2409-2418 (2007) https://doi.org/10.1109/TPWRD.2007.905271
- Willems, J., Mareels, I.: A rigorous solution of the infinite time interval LQ problem with constant state tracking. Syst Control Lett 52(3-4), 289-296 (2004) https://doi.org/10.1016/j.sysconle.2004.01.001
- Krikelis, N., Papadopoulos, E.G.: An optimal design approach for tracking problems and its assessment against classical controllers. Int J Control 36(2), 249-265 (1982) https://doi.org/10.1080/00207178208932890
- Huerta, F., Pizarro, D., Cobreces, S., Rodriguez, F., Giron, C., Rodriguez, A.: LQG servo controller for the current control of LCL grid-connected voltage-source converters. IEEE Trans Ind Electron 59(11), 4272-4284 (2012) https://doi.org/10.1109/TIE.2011.2179273
- Bao, C., Ruan, X., Wang, X., Li, W., Pan, D., Weng, K.: Step-by-step controller design for LCL-type grid- connected inverter with capacitor-current-feedback active- damping. IEEE Trans Power Electron 29(3), 1239-1253 (2014) https://doi.org/10.1109/TPEL.2013.2262378
- Yepes, A.G., Freijedo, F.D., Oscar, L., Doval-Gandoy, J.: Analysis and design of resonant current controllers for voltage-source converters by means of nyquist diagrams and sensitivity function. IEEE Trans Ind Electron 58(11), 5231-5250 (2011) https://doi.org/10.1109/TIE.2011.2126535
Cited by
- Offset error compensation algorithm for grid voltage measurement of grid-connected single-phase inverters based on SRF-PLL vol.20, pp.3, 2020, https://doi.org/10.1007/s43236-020-00077-9
- Multi-objective visual design method of control system for synchronous motor drives vol.103, pp.6, 2020, https://doi.org/10.1007/s00202-021-01299-1