DOI QR코드

DOI QR Code

Pre-calculated duty cycle optimization method based on genetic algorithm implemented in DSP for a non-inverting buck-boost converter

  • Ortatepe, Zafer (Department of Energy Systems Engineering, Ankara Yildirim Beyazit University) ;
  • Karaarslan, Ahmet (Department of Electrical and Electronics Engineering, Ankara Yildirim Beyazit University)
  • Received : 2019.05.15
  • Accepted : 2019.07.31
  • Published : 2020.01.20

Abstract

This study presents a pre-calculated duty cycle optimization method based on the genetic algorithm for a non-inverting buck-boost converter (NIBBC). In this method, the duty cycles are calculated via a discrete model estimation of NIBBC. Despite its high computational time requirements, this method can find solutions to problems that other methods cannot overcome due to their lack of linearity, continuity, or other features. This algorithm is developed using the TMS320F28335 digital signal processor, which is a 32-bit floating point processor operating at 150 MHz. The robustness and stability of this method at varying input voltages, loads, and parameters are then analyzed following the IEEE and IEC standards. The experimental results verify the simulation results and highlight the efficiency, power quality, wide output voltage range, and stability of the proposed method.

Keywords

References

  1. Ding, S., Wang, F.: A new negative output buck-boost converter with wide conversion ratio. IEEE Trans. Ind. Electron. 64(12), 9322-9333 (2017) https://doi.org/10.1109/TIE.2017.2711541
  2. Mademlis, G., Steinke, G.K., Rufel, A.: Feed forward based control in a DC-DC converter of asymmetric multistage-stacked boost architecture. IEEE Trans. Power Electron. 32(2), 1507-1517 (2017) https://doi.org/10.1109/TPEL.2016.2542883
  3. Sun, C., Lehman, B.: Discussions on control loop design in average current mode control. In: IEEE Industry Application Conf., Roma, Italy, pp. 2411-2417 (2000)
  4. Bang, T., Park, J.: Development of a ZVT-PWM buck cascaded buck-boost PFC converter of 2 kW with the widest range of input voltage. IEEE Trans. Ind. Electron. 65(3), 2090-2099 (2018) https://doi.org/10.1109/tie.2017.2739703
  5. Boopathy, K., Boopathy, K.B.: Real-time buck boost converter with improved transient response for battery power applications. J. Electr. Eng. 12(4), 166-171 (2012)
  6. Morrison, R., Egan, M.G.: A new modulation strategy for a buck-boost input AC/DC converter. IEEE Trans. Power Electron. 16(1), 34-45 (2001) https://doi.org/10.1109/63.903987
  7. Vijayalakshmi, S., SreeRengaRaja, T.: Time domain based digital controller for buck-boost converter. J. Electr. Eng. 9(5), 1551-1561 (2014) https://doi.org/10.5370/JEET.2014.9.5.1551
  8. Son, H., Kim, J., Lee, J., Moon, S., Park, J., Lee, S.: A new buck-boost converter with low-voltage stress and reduced conducting components. IEEE Trans. Ind. Electron. 64(9), 7030-7038 (2017) https://doi.org/10.1109/TIE.2017.2686300
  9. Mahdavi, M., Farzanehfard, F.: Bridgeless Sepic PFC rectifier with reduced components and conduction losses. IEEE Trans. Ind. Electron. 58(9), 4153-4160 (2011) https://doi.org/10.1109/TIE.2010.2095393
  10. Kim, J., Moon, J.: Analysis and design of a single-switch Forward-flyback two-channel LED driver with resonant-blocking capacitor. IEEE Trans. Power Electron. 31(3), 2314-2323 (2015) https://doi.org/10.1109/TPEL.2015.2432458
  11. Fardoun, A., Ismail, E.H., Sabzali, A.J., Al-Saffar, M.A.: New efficient bridgeless Cuk rectifiers for PFC applications. IEEE Trans. Power Electron. 27(7), 3292-3301 (2012) https://doi.org/10.1109/TPEL.2011.2182662
  12. Yang, F., Ruan, X., Wu, G., Ye, Z.: Discontinuous-current mode operation of a two-phase interleaved boost DC-DC converter with coupled inductor. IEEE Trans. Power Electron. 33(1), 188-198 (2018) https://doi.org/10.1109/TPEL.2017.2669401
  13. Liao, H.K., Liang, T.J., Yang, L.S., Chen, J.F.: Non-inverting buck-boost converter with interleaved technique for fuel-cell system. IET Power Electron. 5(8), 1379-1388 (2012) https://doi.org/10.1049/iet-pel.2011.0102
  14. Kouro, S., Malinowski, M., Gopakumar, K., Pou, J., Franquelo, L.G., Rodriguez, J., Perez, M.A., Leon, J.I.: Recent advances and industrial applications of multilevel converters. IEEE Trans. Ind. Electron. 57(8), 2553-2580 (2010) https://doi.org/10.1109/TIE.2010.2049719
  15. Tsai, Y.Y., Tsai, Y.S., Tsai, C.W., Tsai, C.H.: Digital noninverting buck-boost converter with enhanced duty-cycle-overlap control. IEEE Trans. Circuits Syst. 64(1), 41-45 (2017) https://doi.org/10.1109/TCSII.2016.2546881
  16. Miao, S., Wang, F., Ma, X.: A new transformer less buck boost converter with positive output voltage. IEEE Trans. Ind. Electron. 63(5), 2965-2975 (2016) https://doi.org/10.1109/TIE.2016.2518118
  17. Tsai, C., Tsai, Y., Liu, H.: A stable mode-transition technique for a digitally controlled non-inverting buck-boost DC-DC converter. IEEE Trans. Ind. Electron. 62(1), 475-483 (2015) https://doi.org/10.1109/TIE.2014.2327565
  18. Mallik, A., Lu, J., Khaligh, A.: A comparative study between PI and type-II compensators for H-bridge PFC converter. In: IEEE Industry Applications Society Annual Meeting, pp. 1-6 (2017)
  19. Hassan, T.K.: A repetitive-PI current controller for boost single phase PFC converters. Energy Power Eng. 3, 69-79 (2011) https://doi.org/10.4236/epe.2011.32010
  20. Guo, L., Hung, J.Y., Nelms, R.M.: Evaluation of DSP-based PID and fuzzy controllers for DC-DC converters. IEEE Trans. Ind. Electron. 56(6), 2237-2248 (2009) https://doi.org/10.1109/TIE.2009.2016955
  21. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1975)
  22. Vrionis, T.D., Koutiva, X.I., Vovos, N.A.: A genetic algorithm-based low voltage ride-through control strategy for grid connected doubly fed induction wind generators. IEEE Trans. Power Syst. 29(3), 1325-1334 (2014) https://doi.org/10.1109/TPWRS.2013.2290622
  23. Prabakar, K., Li, F.: Application of genetic algorithm for the improved performance of boost converters. IFAC Proc. Vol. 45(21), 85-90 (2012) https://doi.org/10.3182/20120902-4-FR-2032.00017
  24. Salehi, R., Farokhnia, N., Abedi, M., Fathi, S.H.: Elimination of low order harmonics in multilevel inverters using genetic algorithm. J. Power Electron. 11(2), 132-139 (2011) https://doi.org/10.6113/JPE.2011.11.2.132
  25. Achiammal, B., Kayalvizhi, R.: Optimal tuning of PI controller using genetic algorithm for power electronic converter. Int. J. Eng. Res. Technol. (IJERT) 2(11), 2935-2940 (2013)
  26. Sudheer, H., Kodad, S.F., Sarvesh, B.: Optimal duty ratio controller for improved DTFC of induction motor using fuzzy logic. In: IEEE Students' Conf. on Electrical, Electronics and Computer Science (SCEECS) (2016)
  27. Karaarslan, A.: The implementation of bee colony optimization algorithm to sheppard-taylor PFC converter. IEEE Trans. Ind. Electron. 60(9), 3711-3719 (2013) https://doi.org/10.1109/TIE.2012.2204711
  28. Karaarslan, A.: The implementation of bee colony optimization control method for interleaved converter. Electr. Eng. 98(2), 109-119 (2015) https://doi.org/10.1007/s00202-015-0348-z
  29. Bayhan, S., Trabelsi, M., Abu-Rub, H., Malinowski, M.: Finite control set model predictive control for a quasi-z-source four-leg inverter under unbalanced load condition. IEEE Trans. Ind. Electron. 64(4), 2560-2569 (2017) https://doi.org/10.1109/TIE.2016.2632062
  30. Li, Y., Liu, K., Wang, H., Gu, M.: Performance evaluation of controller design based on accurate model of non-inverting buck boost converter fed by photovoltaic module. Am. Sci. Res. J. Eng. Technol. Sci. 30(1), 1-15 (2017)
  31. Dowlatabadi, R., Monfared, M., Golestan, S. and Hassanzadeh, A.: Modelling and controller design for a non-inverting buck-boost chopper. In: International Conference on Electrical Engineering and Informatics, Indonesia, July (2011)
  32. Razali, N.M., Geraghty, J.: Genetic algorithm performance with different selection strategies in solving TSP. In: Proceedings of the World Congress on Engineering, July 2011, London (2011)

Cited by

  1. Active noise cancellation frequency-locked loop with a notch filter vol.21, pp.12, 2020, https://doi.org/10.1007/s43236-021-00310-z