References
- Ding, S., Wang, F.: A new negative output buck-boost converter with wide conversion ratio. IEEE Trans. Ind. Electron. 64(12), 9322-9333 (2017) https://doi.org/10.1109/TIE.2017.2711541
- Mademlis, G., Steinke, G.K., Rufel, A.: Feed forward based control in a DC-DC converter of asymmetric multistage-stacked boost architecture. IEEE Trans. Power Electron. 32(2), 1507-1517 (2017) https://doi.org/10.1109/TPEL.2016.2542883
- Sun, C., Lehman, B.: Discussions on control loop design in average current mode control. In: IEEE Industry Application Conf., Roma, Italy, pp. 2411-2417 (2000)
- Bang, T., Park, J.: Development of a ZVT-PWM buck cascaded buck-boost PFC converter of 2 kW with the widest range of input voltage. IEEE Trans. Ind. Electron. 65(3), 2090-2099 (2018) https://doi.org/10.1109/tie.2017.2739703
- Boopathy, K., Boopathy, K.B.: Real-time buck boost converter with improved transient response for battery power applications. J. Electr. Eng. 12(4), 166-171 (2012)
- Morrison, R., Egan, M.G.: A new modulation strategy for a buck-boost input AC/DC converter. IEEE Trans. Power Electron. 16(1), 34-45 (2001) https://doi.org/10.1109/63.903987
- Vijayalakshmi, S., SreeRengaRaja, T.: Time domain based digital controller for buck-boost converter. J. Electr. Eng. 9(5), 1551-1561 (2014) https://doi.org/10.5370/JEET.2014.9.5.1551
- Son, H., Kim, J., Lee, J., Moon, S., Park, J., Lee, S.: A new buck-boost converter with low-voltage stress and reduced conducting components. IEEE Trans. Ind. Electron. 64(9), 7030-7038 (2017) https://doi.org/10.1109/TIE.2017.2686300
- Mahdavi, M., Farzanehfard, F.: Bridgeless Sepic PFC rectifier with reduced components and conduction losses. IEEE Trans. Ind. Electron. 58(9), 4153-4160 (2011) https://doi.org/10.1109/TIE.2010.2095393
- Kim, J., Moon, J.: Analysis and design of a single-switch Forward-flyback two-channel LED driver with resonant-blocking capacitor. IEEE Trans. Power Electron. 31(3), 2314-2323 (2015) https://doi.org/10.1109/TPEL.2015.2432458
- Fardoun, A., Ismail, E.H., Sabzali, A.J., Al-Saffar, M.A.: New efficient bridgeless Cuk rectifiers for PFC applications. IEEE Trans. Power Electron. 27(7), 3292-3301 (2012) https://doi.org/10.1109/TPEL.2011.2182662
- Yang, F., Ruan, X., Wu, G., Ye, Z.: Discontinuous-current mode operation of a two-phase interleaved boost DC-DC converter with coupled inductor. IEEE Trans. Power Electron. 33(1), 188-198 (2018) https://doi.org/10.1109/TPEL.2017.2669401
- Liao, H.K., Liang, T.J., Yang, L.S., Chen, J.F.: Non-inverting buck-boost converter with interleaved technique for fuel-cell system. IET Power Electron. 5(8), 1379-1388 (2012) https://doi.org/10.1049/iet-pel.2011.0102
- Kouro, S., Malinowski, M., Gopakumar, K., Pou, J., Franquelo, L.G., Rodriguez, J., Perez, M.A., Leon, J.I.: Recent advances and industrial applications of multilevel converters. IEEE Trans. Ind. Electron. 57(8), 2553-2580 (2010) https://doi.org/10.1109/TIE.2010.2049719
- Tsai, Y.Y., Tsai, Y.S., Tsai, C.W., Tsai, C.H.: Digital noninverting buck-boost converter with enhanced duty-cycle-overlap control. IEEE Trans. Circuits Syst. 64(1), 41-45 (2017) https://doi.org/10.1109/TCSII.2016.2546881
- Miao, S., Wang, F., Ma, X.: A new transformer less buck boost converter with positive output voltage. IEEE Trans. Ind. Electron. 63(5), 2965-2975 (2016) https://doi.org/10.1109/TIE.2016.2518118
- Tsai, C., Tsai, Y., Liu, H.: A stable mode-transition technique for a digitally controlled non-inverting buck-boost DC-DC converter. IEEE Trans. Ind. Electron. 62(1), 475-483 (2015) https://doi.org/10.1109/TIE.2014.2327565
- Mallik, A., Lu, J., Khaligh, A.: A comparative study between PI and type-II compensators for H-bridge PFC converter. In: IEEE Industry Applications Society Annual Meeting, pp. 1-6 (2017)
- Hassan, T.K.: A repetitive-PI current controller for boost single phase PFC converters. Energy Power Eng. 3, 69-79 (2011) https://doi.org/10.4236/epe.2011.32010
- Guo, L., Hung, J.Y., Nelms, R.M.: Evaluation of DSP-based PID and fuzzy controllers for DC-DC converters. IEEE Trans. Ind. Electron. 56(6), 2237-2248 (2009) https://doi.org/10.1109/TIE.2009.2016955
- Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1975)
- Vrionis, T.D., Koutiva, X.I., Vovos, N.A.: A genetic algorithm-based low voltage ride-through control strategy for grid connected doubly fed induction wind generators. IEEE Trans. Power Syst. 29(3), 1325-1334 (2014) https://doi.org/10.1109/TPWRS.2013.2290622
- Prabakar, K., Li, F.: Application of genetic algorithm for the improved performance of boost converters. IFAC Proc. Vol. 45(21), 85-90 (2012) https://doi.org/10.3182/20120902-4-FR-2032.00017
- Salehi, R., Farokhnia, N., Abedi, M., Fathi, S.H.: Elimination of low order harmonics in multilevel inverters using genetic algorithm. J. Power Electron. 11(2), 132-139 (2011) https://doi.org/10.6113/JPE.2011.11.2.132
- Achiammal, B., Kayalvizhi, R.: Optimal tuning of PI controller using genetic algorithm for power electronic converter. Int. J. Eng. Res. Technol. (IJERT) 2(11), 2935-2940 (2013)
- Sudheer, H., Kodad, S.F., Sarvesh, B.: Optimal duty ratio controller for improved DTFC of induction motor using fuzzy logic. In: IEEE Students' Conf. on Electrical, Electronics and Computer Science (SCEECS) (2016)
- Karaarslan, A.: The implementation of bee colony optimization algorithm to sheppard-taylor PFC converter. IEEE Trans. Ind. Electron. 60(9), 3711-3719 (2013) https://doi.org/10.1109/TIE.2012.2204711
- Karaarslan, A.: The implementation of bee colony optimization control method for interleaved converter. Electr. Eng. 98(2), 109-119 (2015) https://doi.org/10.1007/s00202-015-0348-z
- Bayhan, S., Trabelsi, M., Abu-Rub, H., Malinowski, M.: Finite control set model predictive control for a quasi-z-source four-leg inverter under unbalanced load condition. IEEE Trans. Ind. Electron. 64(4), 2560-2569 (2017) https://doi.org/10.1109/TIE.2016.2632062
- Li, Y., Liu, K., Wang, H., Gu, M.: Performance evaluation of controller design based on accurate model of non-inverting buck boost converter fed by photovoltaic module. Am. Sci. Res. J. Eng. Technol. Sci. 30(1), 1-15 (2017)
- Dowlatabadi, R., Monfared, M., Golestan, S. and Hassanzadeh, A.: Modelling and controller design for a non-inverting buck-boost chopper. In: International Conference on Electrical Engineering and Informatics, Indonesia, July (2011)
- Razali, N.M., Geraghty, J.: Genetic algorithm performance with different selection strategies in solving TSP. In: Proceedings of the World Congress on Engineering, July 2011, London (2011)
Cited by
- Active noise cancellation frequency-locked loop with a notch filter vol.21, pp.12, 2020, https://doi.org/10.1007/s43236-021-00310-z