DOI QR코드

DOI QR Code

Comparative study on predictive dead-beat peak current, valley current and average current control algorithms for phase-shifted full-bridge DC/DC converters

  • Zhang, Yu (Faculty of Information Technology, Beijing University of Technology) ;
  • Zhang, Yiming (Faculty of Information Technology, Beijing University of Technology) ;
  • Wang, Xuhong (Faculty of Information Technology, Beijing University of Technology)
  • 투고 : 2019.07.02
  • 심사 : 2019.11.12
  • 발행 : 2020.01.20

초록

Three types of digital predictive dead-beat current control algorithms (PDB-CCAs) for phase-shifted full-bridge DC-DC converters with peak current, valley current and average current are presented. The PDB-CCAs are derived directly from the switching characteristics and topological structures of the converters. The proposed algorithms can predict the inductor current in the next switching period by sampling the input voltage, output voltage and inductor current in the current switching period. To ensure the stability of the inductor current, the PDB-CCAs result in a greatly improved transient performance, since the inductor current tracks the reference in one switching period or less when a reference perturbation or current perturbation occurs. In addition, although the procedure for deriving the control algorithms is complex, they can be easily implemented by a digital controller after reasonable simplification. Finally, simulation and experimental results are obtained and they agree with the theoretical results, which demonstrate the validity of the proposed PDB-CCAs.

키워드

과제정보

This work was supported by Beijing Science and Technology Plan for the Key Project of Deep Earth Detection Technology (the Development of Large Depth Aviation Electromagnetic Detection System) under Grant no. Z181100005718001.

참고문헌

  1. Guo, B., Zhang, Y.M., Zhang, J.L., Gao, J.X.: Hybrid control strategy of phase-shifted full-bridge LLC converter based on digital direct phase-shift control. J. Power Electron 18(3), 802-816 (2018) https://doi.org/10.6113/JPE.2018.18.3.802
  2. Saggini, S., Stefanutti, W., Tedeschi, E., Mattavelli, P.: Digital deadbeat control tuning for DC-DC converters using error correlation. IEEE Trans. Power Electron. 22(4), 1566-1570 (2007)
  3. Zhang, J.L., Zhang, Y.M., Guo, B., Gao, J.X.: Model predictive power control of a PWM rectifier for electromagnetic transmitters. J. Power Electron. 18(3), 789-801 (2018) https://doi.org/10.6113/JPE.2018.18.3.789
  4. Saggini, S., Ghioni, M., Geraci, A.: An innovative digital control architecture for low-voltage, high-current DC-DC converters with tight voltage regulation. IEEE Trans. Power Electron. 19(1), 210-218 (2004) https://doi.org/10.1109/TPEL.2003.820543
  5. Shi, K., Zhang, D., Zhou, Z.C., Zhang, M.Q., Zhang, D., Gu, Y.: A novel phase-shift dual full-bridge converter with full soft-switching range and wide conversion range. IEEE Trans. Power Electron. 31(11), 7747-7760 (2016) https://doi.org/10.1109/TPEL.2015.2512848
  6. Wang, X.H., Zhang, Y.M., Liu, W.: A new dual-active soft-switching converter for an MTEM electromagnetic transmitter. J. Power Electron. 17(6), 1454-1468 (2017) https://doi.org/10.6113/JPE.2017.17.6.1454
  7. Karimi, R., Adib, E., Farzanehfard, H.: Resonance based zero-voltage zero-current switching full bridge converter. IET Power Electron. 7(7), 1685-1690 (2014) https://doi.org/10.1049/iet-pel.2013.0301
  8. Brunoro, M., Vieira, J.L.F.: A high-performance ZVS full-bridge DC-DC 0-50 V/0-10 a power supply with phase-shift control. IEEE Trans. Power Electron. 14(3), 495-505 (1999) https://doi.org/10.1109/63.761693
  9. Tian, J.S., Gao, J.X., Zhang, Y.M.: Design of a novel integrated L-C-T for PSFB ZVS converters. J. Power Electron. 17(4), 905-913 (2017) https://doi.org/10.6113/JPE.2017.17.4.905
  10. Chattopadhyay, S., Das, S.: A digital current-mode control technique for DC-DC converters. IEEE Trans. Power Electron. 21(6), 1718-1726 (2006) https://doi.org/10.1109/TPEL.2006.882929
  11. Qiu, Y., Liu, H., Chen, X.: Digital average current-mode control of PWM DC-DC converters without current sensors. IEEE Trans. Ind. Electron. 57(5), 1670-1677 (2010) https://doi.org/10.1109/TIE.2009.2032130
  12. Hallworth, M., Shirsavar, S.A.: Microcontroller-based peak current mode control using digital slope compensation. IEEE Trans. Power Electron. 27(7), 3340-3351 (2012) https://doi.org/10.1109/TPEL.2011.2182210
  13. Li, J., Lee, F.C.: New modeling approach and equivalent circuit representation for current-mode control. IEEE Trans. Power Electron. 25(5), 1218-1230 (2010) https://doi.org/10.1109/TPEL.2010.2040123
  14. He, S., Hung, J.Y., Nelms, R.M.: Small-signal modeling of I2 average current mode control. IEEE Trans. Power Electron. 31(5), 3849-3858 (2016) https://doi.org/10.1109/TPEL.2015.2459912
  15. He, S., Nelms, R.M., Hung, J.Y.: Small-signal modeling for digital predictive current mode current in CCM. In: IEEE applied power electronics conference & exposition, pp. 2816-2820 (2015)
  16. Lai, Y.S., Yeh, C.A.: Predictive digital-controlled converter with peak current-mode control and leading-edge modulation. IEEE Trans. Ind. Electron. 56(6), 1854-1863 (2009) https://doi.org/10.1109/TIE.2008.2009510
  17. Xu, J.P., Zhou, G.H., He, M.Z.: Improved digital peak voltage predictive control for switching DC-DC converters. IEEE Trans. Ind. Electron. 56(8), 3222-3229 (2009) https://doi.org/10.1109/TIE.2009.2022068
  18. Bibian, S., Jin, H.: Time delay compensation of digital control for DC switching power supplies using prediction techniques. IEEE Trans. Power Electron. 15(5), 835-842 (2000) https://doi.org/10.1109/63.867672
  19. Athalye, P., Maksimovic, D., Erickson, R.: Variable Frequency predictive digital current mode control. IEEE Power Electron. Lett. 2(4), 113-116 (2004) https://doi.org/10.1109/LPEL.2004.841493
  20. Zhang, Y., Zhang, Y.M., Wang, X.H., Zhu, W.H.: Adaptive digital predictive peak current control algorithm for buck converters. J. Power Electron. 19(3), 613-624 (2019) https://doi.org/10.6113/JPE.2019.19.3.613
  21. Chen, J.Q., Prodic, A., Erickson, R.W., Maksimovic, D.: Predictive digital current programmed control. IEEE Trans. Power Electron. 18(1), 411-419 (2003) https://doi.org/10.1109/TPEL.2002.807140
  22. Bibian, S., Jin, H.: High performance predictive dead-beat digital controller for DC power supplies. IEEE Trans. Power Electron. 17(3), 420-427 (2002) https://doi.org/10.1109/TPEL.2002.1004250
  23. Vlatkovic, V., Sabate, J.A., Ridley, R.B., Lee, F.C., Cho, B.H.: Small-signal analysis of the phase-shifted PWM converter. IEEE Trans. Power Electron. 7(1), 128-135 (1992) https://doi.org/10.1109/63.124585
  24. Schutten, M.J., Torrey, D.A.: Improved small-signal analysis for the phase-shifted PWM power converter. IEEE Trans. Power Electron. 18(2), 659-669 (2003) https://doi.org/10.1109/TPEL.2003.809539
  25. Bendre, A., Venkataramanan, G., Divan, D.: Dynamic analysis of loss-limited switching full-bridge DC-DC converter with multimodal control. IEEE Trans. Ind. Appl. 39(3), 854-863 (2003) https://doi.org/10.1109/TIA.2003.810625
  26. Ho, G.S., Lin, C.C., Hsu, S.H., Tzou, Y.Y.: SoPC based digital current-mode control of full-bridge phase-shifted DC/DC converters with fast dynamic responses. In: IEEE power electronics and drive systems (PEDS), pp. 113-118 (2013)
  27. Lim, J.G., Chung, S.K., Song, Y.J.: FPGA-based digital current mode controller for phase-shifted full-bridge PWM converter. In: IEEE energy conversion congress & exposition, pp. 2840-2846 (2009)
  28. Pai, K.J., Li, Z.H., Qin, L.D.: Small-signal model and feedback controller design of constant-voltage and constant-current output control for a phase-shifted full-bridge converter. In: IFEEC 2017-ECCE Asia, pp. 1800-1805 (2017)

피인용 문헌

  1. Multi-loop current control strategy based on predictive control for multiphase pulse power supplies vol.21, pp.3, 2020, https://doi.org/10.1007/s43236-020-00210-8
  2. Investigation of ultra-lift Luo-converter with peak, average and hysteresis current-mode control vol.21, pp.6, 2020, https://doi.org/10.1007/s43236-021-00235-7