DOI QR코드

DOI QR Code

Predictive current control for indirect matrix converter with reduced current ripple

  • Kim, Keon Young (Advanced Drive Technology) ;
  • Bak, Yeongsu (Department of Electrical and Computer Engineering, Ajou University) ;
  • Lee, Kyo-Beum (Department of Electrical and Computer Engineering, Ajou University)
  • 투고 : 2019.08.27
  • 심사 : 2019.11.04
  • 발행 : 2020.03.20

초록

The predictive current control (PCC) for an indirect matrix converter (IMC) with reduced current ripple is presented in this study. In the proposed PCC scheme, an IMC drives a load applying a split switching vector, which is used as a candidate vector of the cost function. The cost function of the proposed PCC includes a reference state and a predicted state. With the two states, the optimal output vector can be selected from the split switching vectors, thus alleviating the current ripples on both the grid side and the load side of the IMC. However, the use of the split switching vector increases the computation complexity of the cost function optimization because the number of predicted states is increased by the split switching vectors. Hence, the computation complexity reduction method in a deadbeat fashion is proposed for the simple implementation of the proposed PCC on a digital signal processor. In addition, the unity power factor on the grid side is guaranteed by a straightforward modulation technique when the maximum voltage is transferred. The performance of the proposed PCC for the IMC is verified by simulation and experimental results.

키워드

과제정보

This research was supported by Korea Electric Power Corporation (Grant No. R19XO01-20) and the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT for First-Mover Program for Accelerating Disruptive Technology Development (Grant No. 2018M3C1B9088457).

참고문헌

  1. Aten, M., Towers, G., Whitley, C., Wheeler, P., Clare, J., Bradley, K.: Reliability comparison of matrix and other converter topologies. IEEE Trans. Aerosp. Electron. Syst. 42(3), 867-875 (2006) https://doi.org/10.1109/TAES.2006.248190
  2. Arevalo, S.L., Zanchetta, P., Wheeler, P.W., Trentin, A., Empringham, L.: Control and implementation of a matrix-converter-based AC ground power-supply unit for aircraft servicing. IEEE Trans. Ind. Electron. 57(6), 2076-2084 (2010) https://doi.org/10.1109/TIE.2009.2034180
  3. Formentini, A., Trentin, A., Marchesoni, M., Zanchetta, P., Wheeler, P.: Speed finite control set model predictive control of a PMSM fed by matrix converter. IEEE Trans. Ind. Electron. 62(11), 6786-6796 (2015) https://doi.org/10.1109/TIE.2015.2442526
  4. Xia, C., Zhao, J., Yan, Y., Shi, T.: A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction. IEEE Trans. Ind. Electron. 61(6), 2700-2713 (2014) https://doi.org/10.1109/TIE.2013.2276039
  5. Li, H.L., Hu, A.P., Covic, G.A.: A direct AC-AC converter for inductive power-transfer systems. IEEE Trans. Power Electron. 27(2), 661-668 (2012) https://doi.org/10.1109/TPEL.2011.2159397
  6. Bac, N.X., Vilathgamuwa, D.M., Madawala, U.K.: A SiC-based matrix converter topology for inductive power transfer system. IEEE Trans. Power Electron. 29(8), 4029-4038 (2014) https://doi.org/10.1109/TPEL.2013.2291434
  7. Tuyen, N.D., Phuong, L.M., Lee, H.-H.: SVPWM strategies for three-level T-type neutral-point-clamped indirect matrix converter. J. Power Electron. 19(4), 944-955 (2019) https://doi.org/10.6113/JPE.2019.19.4.944
  8. Al-Hitmi, M.A., Rahman, K., Iqbal, A., Al-Emadi, N.: Control and modulation of three to asymmetrical six-phase matrix converters based on space vectors. J. Power Electron. 19(2), 475-486 (2019) https://doi.org/10.6113/JPE.2019.19.2.475
  9. Xu, Y.-X., Ge, H.-J., Guo, H.: Unbalance control strategy of boost type three-phase to single-phase matrix converters based on Lyapunov function. J. Power Electron. 19(1), 89-98 (2019) https://doi.org/10.6113/JPE.2019.19.1.89
  10. Park, K., Lee, K.-B., Blaabjerg, F.: Improving output performance of a Z-source sparse matrix converter under unbalanced input-voltage conditions. IEEE Trans. Power Electron. 27(4), 2043-2054 (2012) https://doi.org/10.1109/TPEL.2011.2170709
  11. Friedli, T., Kolar, J.W., Rodriguez, J., Wheeler, P.W.: Comparative evaluation of three-phase AC-AC matrix converter and voltage DC-link back-to-back converter systems. IEEE Trans. Ind. Electron. 59(12), 4487-4510 (2012) https://doi.org/10.1109/TIE.2011.2179278
  12. Liu, X., Wang, P., Loh, P.C., Blaabjerg, F.: A compact three-phase single-input/dual-output matrix converter. IEEE Trans. Ind. Electron. 59(1), 6-16 (2012) https://doi.org/10.1109/TIE.2011.2146216
  13. Nguyen, T.D., Lee, H.-H.: Dual three-phase indirect matrix converter with carrier-based PWM method. IEEE Trans. Power Electron. 29(2), 569-581 (2014) https://doi.org/10.1109/TPEL.2013.2255067
  14. Bak, Y., Lee, E., Lee, K.-B.: Indirect matrix converter for hybrid electric vehicle application with three-phase and single-phase outputs. Energies 8(5), 3849-3866 (2015) https://doi.org/10.3390/en8053849
  15. Bak, Y., Lee, J.-S., Lee, K.-B.: Balanced current control strategy for current source rectifier stage of indirect matrix converter under unbalanced grid voltage conditions. Energies 10(1), 27 (2017) https://doi.org/10.3390/en10010027
  16. Bak, Y., Lee, K.-B.: Constant speed control of a permanent-magnet synchronous motor using a reverse matrix converter under variable generator input conditions. IEEE J. Emerg. Sel. Topics Power Electron. 6(1), 315-326 (2018) https://doi.org/10.1109/jestpe.2017.2715046
  17. Jeong, Y.-S., Sul, S.-K., Hiti, S., Rahman, K.M.: Online minimum-copper-loss control of an interior permanent-magnet synchronous machine for automotive applications. IEEE Trans. Ind. Appl. 42(5), 1222-1229 (2006) https://doi.org/10.1109/TIA.2006.880910
  18. Deng, Y., Liang, Z., Xia, P., Zuo, X.: Improved speed sensorless vector control algorithm of induction motor based on long cable. J. Electr. Eng. Technol. 14(1), 219-229 (2019) https://doi.org/10.1007/s42835-018-00023-7
  19. Senicar, F., Bartsch, A., Kruger, B., Soter, S.: Enhanced bandwidth current controller for FPGA based inverter drives-a detailed analysis and implementation. In: Proceeding of the Industrial Electronics Conference, pp. 1775-1780 (2012)
  20. Lee, K.-B., Blaabjerg, F.: Sensorless DTC-SVM for induction motor driven by a matrix converter using a parameter estimation strategy. IEEE Trans. Ind. Electron. 55(2), 512-521 (2008) https://doi.org/10.1109/TIE.2007.911940
  21. Choi, D.-K., Lee, K.-B.: Dynamic performance improvement of AC/DC converter using model predictive direct power control with finite control set. IEEE Trans. Ind. Electron. 62(2), 757-767 (2015) https://doi.org/10.1109/TIE.2014.2352214
  22. Ma, W., Sun, P., Zhou, G., Sailijiang, G., Zhang, Z., Liu, Y.: A low-computation indirect model predictive control for modular multilevel converters. J. Power Electron. 19(2), 529-539 (2019) https://doi.org/10.6113/JPE.2019.19.2.529
  23. Alsofyani, I.M., Idris, N.R.N., Lee, K.-B.: Impact of observability and multi-objective optimization on the performance of extended Kalman filter for DTC of AC machines. J. Electr. Eng. Technol. 14(1), 231-242 (2019) https://doi.org/10.1007/s42835-018-00019-3
  24. Bak, Y., Lee, K.-B.: Reverse matrix converter control method for PMSM drives using DPC. Int. J. Electron. 105(5), 725-740 (2018) https://doi.org/10.1080/00207217.2017.1382012
  25. Li, C., Wang, G., Li, F., Li, H., Xia, Z., Liu, Z.: Fault-tolerant control for 5L-HNPC inverter-fed induction motor drives with finite control set model predictive control based on hierarchical optimization. J. Power Electron. 19(4), 989-999 (2019) https://doi.org/10.6113/JPE.2019.19.4.989
  26. Liu, X.-D., Li, K., Zhang, C.-H.: Improved backstepping control with nonlinear disturbance observer for the speed control of permanent magnet synchronous motor. J. Electr. Eng. Technol. 14(1), 275-285 (2019) https://doi.org/10.1007/s42835-018-00021-9
  27. Cho, Y., Bak, Y., Lee, K.-B.: Torque-ripple reduction and fast torque response strategy for predictive torque control of induction motors. IEEE Trans. Power Electron. 33(3), 2458-2470 (2018) https://doi.org/10.1109/TPEL.2017.2699187
  28. Ali, N., Rehman, A.U., Alam, W., Maqsood, H.: Disturbance observer based robust sliding mode control of permanent magnet synchronous motor. J. Electr. Eng. Technol. 14(5), 1-8 (2019) https://doi.org/10.1007/s42835-018-00027-3
  29. Rodriguez, J., Pontt, J., Silva, C.A., Correa, P., Lezana, P., Cortes, P., Ammann, U.: Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron. 54(1), 495-503 (2007) https://doi.org/10.1109/TIE.2006.888802
  30. Correa, P., Rodriguez, J., Rivera, M., Espinoza, J.R., Kolar, J.W.: Predictive control of an indirect matrix converter. IEEE Trans. Ind. Electron. 56(6), 1847-1853 (2009) https://doi.org/10.1109/TIE.2009.2013686
  31. Rivera, M., Rodriguez, J., Wu, B., Espinoza, J.R., Rojas, C.A.: Current control for an indirect matrix converter with filter resonance mitigation. IEEE Trans. Ind. Electron. 59(1), 71-79 (2012) https://doi.org/10.1109/TIE.2011.2165311
  32. Tarisciotti, L., Lei, J., Formentini, A., Trentin, A., Zanchetta, P., Wheeler, P., Rivera, M.: Modulated predictive control for indirect matrix converter. IEEE Trans. Ind. Appl. 53(5), 4644-4654 (2017) https://doi.org/10.1109/TIA.2017.2699666
  33. Zhang, G., Qian, J., Liu, Z., Tian, Z.: Predictive current control of four-quadrant converters based on specific sampling method and modified Z-transform. J. Power Electron. 19(1), 179-189 (2019) https://doi.org/10.6113/JPE.2019.19.1.179
  34. Lee, J.-S., Lee, K.-B., Blaabjerg, F.: Predictive control with discrete space-vector modulation of vienna rectifier for driving PMSG of wind turbine systems. IEEE Trans. Power Electron. 34(12), 12368-12383 (2019) https://doi.org/10.1109/tpel.2019.2905843
  35. Lee, J.-H., Lee, J.-S., Moon, H.-C., Lee, K.-B.: An improved finite-set model predictive control based on discrete space vector modulation methods for grid-connected three-level voltage source inverter. IEEE J. Emerg. Sel. Topics Power Electron. 6(4), 1744-1760 (2018) https://doi.org/10.1109/jestpe.2018.2830783
  36. Park, J.-H., Kim, D.J., Lee, K.-B.: Predictive control algorithm including conduction-mode detection for PFC converter. IEEE Trans. Ind. Electron. 63(9), 5900-5911 (2016) https://doi.org/10.1109/TIE.2016.2578279
  37. Lee, K.-B.: Advanced Power Electronics. Munundang, Seoul (2019)
  38. Rodriguez, J., Cortes, P.: Predictive Control of Power Converters and Electrical Drives. Wiley, New York (2012)
  39. Alsofyani, I.M., Lee, K.-B.: Improved deadbeat FC-MPC based on the discrete space vector modulation method with efficient computation for a grid-connected three-level inverter system. Energies 12(16), 3111 (2019) https://doi.org/10.3390/en12163111
  40. Moon, H.-C., Lee, J.-S., Lee, K.-B.: A robust deadbeat finite set model predictive current control based on discrete space vector modulation for a grid-connected voltage source inverter. IEEE Trans. Energy Convers. 33(4), 1719-1728 (2018) https://doi.org/10.1109/TEC.2018.2830776
  41. Zhou, Y., Li, H., Zhang, H., Mao, J., Huang, J.: Model free deadbeat predictive speed control of surface-mounted permanent magnet synchronous motor drive system. J. Electr. Eng. Technol. 14(1), 265-274 (2019) https://doi.org/10.1007/s42835-018-00022-8
  42. Kim, K.Y., Bak, Y., Park, J.-H., Lee, K.-B.; Model predictive control using subdivided voltage vectors for current ripple reduction in an indirect matrix converter. In: Proceeding of the IPEC Conference, pp. 4104-4108 (2018)
  43. Bak, Y., Lee, K.-B.: Reducing switching losses in indirect matrix converter drives: discontinuous PWM method. J. Power Electron. 18(5), 1325-1335 (2018) https://doi.org/10.6113/JPE.2018.18.5.1325

피인용 문헌

  1. Improved Finite Set-Predictive Torque Control of PMSM Fed by Indirect Matrix Converter with Discrete Space Vector Modulation vol.9, pp.12, 2020, https://doi.org/10.3390/electronics9122133
  2. Simplified model predictive current control strategy for dual five-phase VSI-fed open end load to eliminate common-mode voltage and reduce current harmonics vol.21, pp.8, 2020, https://doi.org/10.1007/s43236-021-00266-0