DOI QR코드

DOI QR Code

Lithium-ion batteries remaining useful life prediction using Wiener process and unscented particle filter

  • Wang, Ranran (School of Mathematics and Statistics, Xidian University) ;
  • Feng, Hailin (School of Mathematics and Statistics, Xidian University)
  • Received : 2019.04.10
  • Accepted : 2019.08.12
  • Published : 2020.01.20

Abstract

Remaining useful life (RUL) prediction plays an important role in the prognosis and health management of lithium-ion batteries (LIBs). This paper proposes a new method based on the Wiener process for the RUL prediction of LIBs. Firstly, a state-space model based on the Wiener process is constructed to describe the LIBs degradation process, which considers the four variability sources of the degradation process simultaneously. Then, the model parameters are initialized using maximum likelihood estimation (MLE) and dynamically estimated by an unscented particle filter (UPF) algorithm. Finally, through comparison with other models, the proposed method shows its effectiveness and superiority in describing the degradation process and RUL prediction of LIBs.

Keywords

References

  1. Dong, G., Zhang, X., Zhang, C., Chen, Z.: A method for state of energy estimation of lithium-ion batteries based on neural network model. Energy 90, 879-888 (2015) https://doi.org/10.1016/j.energy.2015.07.120
  2. Hu, X., Zou, C., Zhang, C., Li, Y.: Technological developments in batteries: a survey of principal roles, types, and management needs. IEEE Power Energy Mag. 15(5), 20-31 (2017) https://doi.org/10.1109/MPE.2017.2708812
  3. Gao, D., Huang, M.: Prediction of remaining useful life of lithium-ion battery based on multi-kernel support vector machine with particle swarm optimization. J. Power Electron. 17(5), 1288-1297 (2017) https://doi.org/10.6113/JPE.2017.17.5.1288
  4. Goebel, K., Saha, B., Saxena, A., Celaya, J.R., Christophersen, J.P.: Prognostics in battery health management. IEEE Instrum. Meas. Mag. 11(4), 33-40 (2008) https://doi.org/10.1109/MIM.2008.4579269
  5. Kan, M.S., Tan, A.C.C., Mathew, J.: A review on prognostic techniques for non-stationary and non-linear rotating systems. Mech. Syst. Signal Process. 62-63, 1-20 (2015) https://doi.org/10.1016/j.ymssp.2015.02.016
  6. Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M., Dietmayer, K.: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 239, 680-688 (2013) https://doi.org/10.1016/j.jpowsour.2012.11.146
  7. Wei, J., Dong, G., Chen, Z.: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression. IEEE Trans. Ind. Electron. 65(7), 5634-5643 (2018) https://doi.org/10.1109/tie.2017.2782224
  8. Ng, S.S.Y., Xing, Y., Tsui, K.L.: A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl. Energy 118, 114-123 (2014) https://doi.org/10.1016/j.apenergy.2013.12.020
  9. Wu, J., Zhang, C., Chen, Z.: An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl. Energy 173, 134-140 (2016) https://doi.org/10.1016/j.apenergy.2016.04.057
  10. Lei, Y., Li, N., Guo, L.: Machinery health prognostics: a systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 104, 799-834 (2018) https://doi.org/10.1016/j.ymssp.2017.11.016
  11. Zhou, Y., Huang, M.: Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. Microelectron. Reliab. 65, 265-273 (2016) https://doi.org/10.1016/j.microrel.2016.07.151
  12. Liu, D., Pang, J., Zhou, J.: Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron. Reliab. 53(6), 832-839 (2013) https://doi.org/10.1016/j.microrel.2013.03.010
  13. Zhang, Z., Si, X., Hu, C., Lei, Y.: Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods. Eur. J. Oper. Res. 271(3), 775-796 (2018) https://doi.org/10.1016/j.ejor.2018.02.033
  14. Tang, S., Yu, C., Wang, X., Guo, X.: Remaining useful life prediction of lithium-ion batteries based on the Wiener process with measurement error. Energies 7(2), 520-547 (2014) https://doi.org/10.3390/en7020520
  15. Zhai, Q., Ye, Z.S.: RUL prediction of deteriorating products using an adaptive Wiener process model. IEEE Trans. Ind. Inform. 13(6), 2911-2921 (2017) https://doi.org/10.1109/TII.2017.2684821
  16. Wang, D., Zhao, Y., Yang, F., Tsui, K.L.: Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries. Mech. Syst. Signal Process. 93, 531-544 (2017) https://doi.org/10.1016/j.ymssp.2017.02.027
  17. Si, X.S.: An adaptive prognostic approach via nonlinear degradation modeling: application to battery data. IEEE Trans. Ind. Electron. 62(8), 5082-5096 (2015) https://doi.org/10.1109/TIE.2015.2393840
  18. Wang, D., Yang, F., Zhao, Y., Tsui, K.L.: Prognostics of lithium-ion batteries based on state space modeling with heterogeneous noise variances. Microelectron. Reliab. 75, 1-8 (2017) https://doi.org/10.1016/j.microrel.2017.06.002
  19. An, D., Choi, J.H., Kim, N.H.: Prognostics 101: a tutorial for particle filter-based prognostics algorithm using Matlab. Reliab. Eng. Syst. Saf. 115, 161-169 (2013) https://doi.org/10.1016/j.ress.2013.02.019
  20. Zhang, L., Mu, Z., Sun, C.: Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter. IEEE Access 6, 17729-17740 (2018) https://doi.org/10.1109/access.2018.2816684
  21. Dong, G., Chen, Z., Wei, J., Ling, Q.: Battery health prognosis using Brownian motion modeling and particle filtering. IEEE Trans. Ind. Electron. 65(11), 8646-8655 (2018) https://doi.org/10.1109/TIE.2018.2813964
  22. Jouin, M., Gouriveau, R., Hissel, D., Pera, M.C., Zerhouni, N.: Particle filter-based prognostics: review, discussion and perspectives. Mech. Syst. Signal Process. 72-73, 2-31 (2016) https://doi.org/10.1016/j.ymssp.2015.11.008
  23. Li, T., Sun, S., Sattar, T.P., Corchado, J.M.: Fight sample degeneracy and impoverishment in particle filters: a review of intelligent approaches. Expert Syst. Appl. 41(8), 3944-3954 (2014) https://doi.org/10.1016/j.eswa.2013.12.031
  24. He, Y., Liu, X., Zhang, C., Chen, Z.: A new model for state-of charge (SOC) estimation for high-power Li-ion batteries. Appl. Energy 101, 808-814 (2013) https://doi.org/10.1016/j.apenergy.2012.08.031
  25. Miao, Q., Xie, L., Cui, H., Liang, W., Pecht, M.: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron. Reliab. 53(6), 805-810 (2013) https://doi.org/10.1016/j.microrel.2012.12.004
  26. Lee, M.L.T., Whitmore, G.A.: Threshold regression for survival analysis: modeling event times by a stochastic process reaching a boundary. Stat. Sci. 21(4), 501-513 (2006) https://doi.org/10.1214/088342306000000330
  27. Si, X.S., Wang, W., Hu, C.H., Zhou, D.H., Pecht, M.G.: Remaining useful life estimation based on a nonlinear diffusion degradation process. IEEE Trans. Reliab. 61(1), 50-67 (2012) https://doi.org/10.1109/TR.2011.2182221
  28. Saha, B., Goebel, K.: Battery data set, NASA ames prognostics data repository. NASA Ames Research Center, Moffett Field, CA. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#battery (2007). Accessed 25 Nov 2018

Cited by

  1. Accurate Real Time On-Line Estimation of State-of-Health and Remaining Useful Life of Li ion Batteries vol.10, pp.21, 2020, https://doi.org/10.3390/app10217836
  2. Battery remaining useful life prediction using improved mutated particle filter vol.3, pp.1, 2020, https://doi.org/10.1002/est2.218
  3. SOH and RUL prediction of Li-ion batteries based on improved Gaussian process regression vol.21, pp.12, 2020, https://doi.org/10.1007/s43236-021-00318-5