Acknowledgement
This work is supported by Guangzhou Science and Technology Plan Project (No. 201904010495) and High Level University Construction Project of Guangzhou University (No. 69-18ZX10136). These supports are gratefully acknowledged.
References
- Lu, X., Qu, Y., Wang, Y., Qin, C., Liu, G.: A comprehensive review on hybrid power system for PEMFC-HEV: issues and strategies. Energy Convers. Manag. 171, 1273-1291 (2018) https://doi.org/10.1016/j.enconman.2018.06.065
- Xie, J., Ma, J., Chen, J.: Peukert-equation-based state-of-charge estimation for LiFePO4 batteries considering the battery thermal evolution effect. Energies 11, 1112 (2018) https://doi.org/10.3390/en11051112
- Feng, F., Hu, X., Hu, L., Hu, F., Li, Y., Zhang, L.: Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs. Renew. Sustain. Energy Rev. 112, 102-113 (2019) https://doi.org/10.1016/j.rser.2019.05.042
- Wei, Z., Zhao, J., Ji, D., Tseng, K.J.: A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model. Appl. Energy 204, 1264-1274 (2017) https://doi.org/10.1016/j.apenergy.2017.02.016
- Zou, C., Manzie, C., Nesic, D., Kallapur, A.G.: Multi-time-scale observer design for state-of-charge and state-of-health of a lithium-ion battery. J. Power Sour. 335, 121-130 (2016) https://doi.org/10.1016/j.jpowsour.2016.10.040
- Li, X., Wang, Z., Zhang, L.: Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles. Energy 174, 33-44 (2019) https://doi.org/10.1016/j.energy.2019.02.147
- Xie, J., Ma, J., Bai, K.: State-of-charge estimators considering temperature effect, hysteresis potential, and thermal evolution for LiFePO4 batteries. Int. J. Energy Res. 42(8), 2710-2727 (2018) https://doi.org/10.1002/er.4060
- Wei, Z., Zou, C., Leng, F., Soong, B.H., Tseng, K.J.: Online model identification and state-of-charge estimate for lithium-ion battery with a recursive total least squares-based observer. IEEE Trans. Ind. Electron. 65(2), 1336-1346 (2017) https://doi.org/10.1109/tie.2017.2736480
- Wang, Y., Zhang, C., Chen, Z.: On-line battery state-of-charge estimation based on an integrated estimator. Appl. Energy 185, 2026-2032 (2017) https://doi.org/10.1016/j.apenergy.2015.09.015
- Xie, J., Ma, J., Chen, J.: Available power prediction limited by multiple constraints for LiFePO4 batteries based on central difference Kalman filter. Int. J. Energy Res. 42(15), 4730-4745 (2018) https://doi.org/10.1002/er.4227
- Wang, Y., Chen, Z., Zhang, C.: On-line remaining energy prediction: a case study in embedded battery management system. Appl. Energy 194, 688-695 (2017) https://doi.org/10.1016/j.apenergy.2016.05.081
- Wladislaw, W., Fleischer, C., Sauer, D.U.: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Sour. 258, 321-339 (2014) https://doi.org/10.1016/j.jpowsour.2014.02.064
- Zhang, W., Wei, S., Ma, Z.: Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery. J. Power Sour. 289, 50-62 (2015) https://doi.org/10.1016/j.jpowsour.2015.04.148
- Wang, Y., Zhang, C., Chen, Z.: An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles. J. Power Sour. 305, 80-88 (2016) https://doi.org/10.1016/j.jpowsour.2015.11.087
- Dong, G., Zhang, X., Zhang, C., Chen, Z.: A method for state of energy estimation of lithium-ion batteries based on neural network model. Energy 90, 879-888 (2015) https://doi.org/10.1016/j.energy.2015.07.120
- Zhang, K.: Comparison of Nonlinear Filtering Methods for Battery State of Charge Estimation. M.S. Thesis, University of New Orleans, U.S.A. (2014)
- Berrueta, A., Urtasun, A., Ursua, A., Sanchis, P.: A comprehensive model for lithium-ion batteries: from the physical principles to an electrical model. Energy 144, 286-300 (2018) https://doi.org/10.1016/j.energy.2017.11.154
- Fotouhi, A., Auger, D.J., Propp, K., Longo, S., Wild, M.: A review on electric vehicle battery modelling: from lithium-ion toward lithium-sulphur. Renew. Sustain. Energy Rev. 56, 1008-1021 (2016) https://doi.org/10.1016/j.rser.2015.12.009
- He, H., Xiong, R., Guo, H., Li, S.: Comparison study on the battery models used for the energy management of batteries in electric vehicles. Energy Convers. Manag. 64, 113-121 (2012) https://doi.org/10.1016/j.enconman.2012.04.014
- He, H., Xiong, R., Fan, J.: Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies 4, 582-598 (2011) https://doi.org/10.3390/en4040582
- He, H., Xiong, R., Zhang, X., Sun, F., Fan, J.: State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved Thevenin model. IEEE Trans. Veh. Technol. 60(4), 1461-1469 (2011) https://doi.org/10.1109/TVT.2011.2132812
- Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 2. Modeling and identification. J. Power Sour. 134(2), 262-276 (2004) https://doi.org/10.1016/j.jpowsour.2004.02.032
- Ma, J., Xie, J., Bai, K.: Comparative study of non-electrochemical hysteresis models for LiFePO4/graphite batteries. J. Power Electron. 18(5), 1585-1594 (2018) https://doi.org/10.6113/JPE.2018.18.5.1585
- Hu, X., Yuan, H., Zou, C., Li, Z., Zhang, L.: Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus. IEEE Trans. Veh. Technol. 67(11), 10319-10329 (2018) https://doi.org/10.1109/tvt.2018.2865664
- He, H., Zhang, X., Xiong, R., Xu, Y., Guo, H.: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles. Energy 39(1), 310-318 (2012) https://doi.org/10.1016/j.energy.2012.01.009
- He, Y., Liu, X., Zhang, C., Chen, Z.: A new model for state-of-charge (SOC) estimation for high-power Li-ion batteries. Appl. Energy 101, 808-814 (2013) https://doi.org/10.1016/j.apenergy.2012.08.031
- Malysz, P., Ye, J., Gu, R., Yang, H., Emadi, A.: Battery state-of-power peak current calculation and verification using an asymmetric parameter equivalent circuit model. IEEE Trans. Veh. Technol. 65(6), 4512-4522 (2015) https://doi.org/10.1109/TVT.2015.2443975
- Hu, X., Li, S., Peng, H., Sun, F.: Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries. J. Power Sour. 217(1), 209-219 (2012) https://doi.org/10.1016/j.jpowsour.2012.06.005
Cited by
- Predicting the State of Power of an Iron-Based Li-Ion Battery Pack Including the Constraint of Maximum Operating Temperature vol.9, pp.10, 2020, https://doi.org/10.3390/electronics9101737
- State of Charge and State of Energy Estimation for Lithium-Ion Batteries Based on a Long Short-Term Memory Neural Network vol.37, 2021, https://doi.org/10.1016/j.est.2021.102440