DOI QR코드

DOI QR Code

DSP-based implementation of improved deadbeat control for three-phase shunt active power filters

  • Ferhat, Mohamed (Automatic Laboratory of Setif (LAS), Department of Electrical Engineering, University of Setif-1) ;
  • Rahmani, Lazhar (Automatic Laboratory of Setif (LAS), Department of Electrical Engineering, University of Setif-1) ;
  • Babes, Badreddine (Research Center in Industrial Technologies CRTI)
  • Received : 2018.11.22
  • Accepted : 2019.07.12
  • Published : 2020.01.20

Abstract

This paper presents an experimental verification of an all-digital approach based on a deadbeat current control (DBC) algorithm for a three-phase shunt active power filter (shunt-APF), which provides fixed switching frequency operation and eliminates the harmonic and reactive currents drawn by nonlinear loads. The control scheme of the global system is fully digital without any external analog circuit or complex control logic. It mainly integrates the DBC for shunt-APF command current generation and a linear digital controller for DC-bus voltage regulation. The control of the shunt-APF is investigated using MATLAB simulation software and implemented on the dSPACE ds1104 control kit. This hardware calculates the duty cycle (∆T/T) and compares it to a carrier wave to give the control pulses of the inverter switches. The resulting simulation and experimental results verified the validity of the theoretical analysis of the proposed method.

Keywords

References

  1. Dey, P., Mekhilef, S.: Shunt hybrid active power filter under non ideal voltage based on fuzzy logic controller. Int. J. Electron. 103(9), 1580-1592 (2016)
  2. Akagi, H.: Trends in active power line conditioners. IEEE Trans. Power Electron. 9(3), 263-268 (1994) https://doi.org/10.1109/63.311258
  3. Matas, J., de Vicuna, L.G., Miret, J., Guerrero, J.M., Castilla, M.: Feedback linearization of a single-phase active power filter via sliding mode control. IEEE Trans. Power Electron. 23(1), 116-125 (2008) https://doi.org/10.1109/TPEL.2007.911790
  4. Sedighy, M., Dewanand, S.B., Dawson, F.P.: A robust digital current control method for active power filters. IEEE Trans. Ind. Appl. 36(4), 1158-1164 (2000) https://doi.org/10.1109/28.855974
  5. Miret, J., Castilla, M., Matas, J., Guerrero, J.M., Vasquez, J.C.: Selective harmonic-compensation control for single-phase active power filter with high harmonic rejection. IEEE Trans. Ind. Electron. 56(8), 3117-3127 (2009) https://doi.org/10.1109/TIE.2009.2024662
  6. Jeong, S.G., Woo, M.H.: DSP-based active power filter with predictive current control. IEEE Trans. Ind. Electron. 44(3), 329-336 (1997) https://doi.org/10.1109/41.585830
  7. Allmeling, J.: A control structure for fast harmonics compensation in active filters. IEEE Trans. Power Electron. 19(2), 508-514 (2004) https://doi.org/10.1109/TPEL.2003.823172
  8. Chen, B.S., Joos, G.: Direct power control of active filters with averaged switching frequency regulation. IEEE Trans. Power Electron. 23(6), 2729-2737 (2008) https://doi.org/10.1109/TPEL.2008.2004958
  9. Nishida, K., Konishi, Y., Nakaoka, M.: Current control implementation with deadbeat algorithm for three-phase current-source active power filter. Proc. IEE Electr. Power Appl. 149, 275-282 (2002) https://doi.org/10.1049/ip-epa:20020257
  10. Akagi, H.: Active harmonic filters. Proc. IEEE 93(12), 2128-2141 (2005) https://doi.org/10.1109/JPROC.2005.859603
  11. Gao, C., Jiang, X., Li, Y., Chen, Z., Liu, J.: A DC-link voltage self-balance method for a diode-clamped modular multilevel converter with minimum number of voltage sensors. IEEE Trans. Power Electron. 28(5), 2125-2139 (2013) https://doi.org/10.1109/TPEL.2012.2212915
  12. Routimo, M., Salo, M., Tuusa, H.: Comparison of voltage-source and current-source shunt active power filters. IEEE Trans. Power Electron. 22(2), 636-643 (2007) https://doi.org/10.1109/TPEL.2006.890005
  13. Astrom, K.J., Hagglund, T.: PID Controllers: Theory, Design, and Tuning, 2nd edn. Instrument Society of America, Research Triangle Park (1995)
  14. Gupta, R.: Generalized frequency domain formulation of the switching frequency for hysteresis current controlled VSI used for load compensation. IEEE Trans. Power Electron. 27(5), 2526-2535 (2012) https://doi.org/10.1109/TPEL.2011.2175750
  15. Malesani, L., Mattavelli, P., Tomasin, P.: High performance hysteresis modulation technique for active filters. IEEE Trans. Power Electron. 12(5), 876-884 (1997) https://doi.org/10.1109/63.623006
  16. Mita, T., Nam, T.K.: Time varying deadbeat control of high order chained systems. Asian J. Control 5(2), 316-323 (2003) https://doi.org/10.1111/j.1934-6093.2003.tb00123.x
  17. Han, Y., Xu, L., Khan, M.M., Chen, C., Yao, G., Zhou, L.D.: Robust deadbeat control scheme for a hybrid APF with resetting filter and ADALINE based harmonic estimation algorithm. IEEE Trans. Ind. Electron. 58(9), 3893-3904 (2011) https://doi.org/10.1109/TIE.2010.2093475
  18. Malesani, L., Mattavelli, P., Buso, S.: Robust dead-beat current control for PWM rectifiers and active filters. IEEE Trans. Ind. Appl. 35(3), 613-620 (1999) https://doi.org/10.1109/28.767012
  19. Hamasaki, S.I., Kawamura, A.: Improvement of current regulation of line current detection type active filter based on dead beat control. IEEE Trans. Ind. Appl. 39(2), 536-541 (2003) https://doi.org/10.1109/TIA.2003.808956
  20. Oettmeier, M., Heising, C., Staudt, V., Steimel, A.: Dead-beat control algorithm for single-phase 50-kW AC railway grid representation. IEEE Trans. Power Electron. 25(5), 1184-1192 (2010) https://doi.org/10.1109/TPEL.2009.2039878
  21. Qi, C., Tu, P., Wang, P., Zagrodnik, M.: Predictive current control for multilevel cascaded H-bridge inverters based on a deadbeat solution. J. Power Electron. 17(1), 76-87 (2017) https://doi.org/10.6113/JPE.2017.17.1.76
  22. Buso, S., Caldognetto, T., Brandao, D.I.: Deadbeat current controller for voltage-source converters with improved large-signal response. IEEE Trans. Ind. Appl. 52(2), 1588-1596 (2016) https://doi.org/10.1109/TIA.2015.2488644
  23. Wang, S., Wan, S.: Full digital deadbeat speed control for permanent magnet synchronous motor with load compensation. IET Power Electron. 6(4), 634-641 (2013) https://doi.org/10.1049/iet-pel.2012.0114
  24. Lavers, E.D., Lehn, P.W., Iravani, M.R., Chair, D., Durbak, D., Fletcher, D., Wilson, P., Wachal, R., Sen, K., Martinez, J., Johnson, B., Tyll, H., Feero, B., Sannino, A., Sybille, G., Keri, A.: A benchmark system for digital time-domain simulation of an active power filter. IEEE Trans. Power Deliv. 20(1), 234-241 (2005) https://doi.org/10.1109/TPWRD.2004.837815
  25. Ellabban, O., Mierlo, J.V., Lataire, P.: A DSP based dual loop digital controller design and implementation of a high power boost converter for hybrid electric vehicles applications. J. Power Electron. 11(2), 113-119 (2011) https://doi.org/10.6113/JPE.2011.11.2.113
  26. Babes, B., Rahmani, L., Chaoui, A., Hamouda, N.: Design and experimental validation of a digital predictive controller for variable speed wind turbine systems. J. Power Electron. 17(1), 232-241 (2017) https://doi.org/10.6113/JPE.2017.17.1.232
  27. Li, K., Bo, A., Zheng, H., Sun, N.: Performance analysis of three-phase phase-locked loops for distorted and unbalanced grids. J. Power Electron. 17(1), 262-271 (2017) https://doi.org/10.6113/JPE.2017.17.1.262

Cited by

  1. Experimental validation of solar PV sustained ZSI based unified active power filter for enrichment of power quality vol.62, pp.1, 2021, https://doi.org/10.1080/00051144.2021.1908013
  2. Experimental validation of solar PV sustained ZSI based Unified Active Power Filter for enrichment of power quality vol.62, pp.1, 2020, https://doi.org/10.1080/00051144.2021.1913817