DOI QR코드

DOI QR Code

Coordinated control of series compensation link and bus interface converter in the AC-DC hybrid microgrid

  • Meng, Runquan (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Du, Yi (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Han, Xiaoqing (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Wang, Lei (College of Electrical and Electronic Engineering, Nanyang Technological University) ;
  • Wang, Peng (College of Electrical and Electronic Engineering, Nanyang Technological University)
  • 투고 : 2019.07.21
  • 심사 : 2019.11.17
  • 발행 : 2020.03.20

초록

To improve the fault ride-through capability and power quality of a hybrid microgrid (HMG), a series compensation link (SCL) is inserted between an AC-DC HMG and a utility grid, which forms a new HMG topology. Correspondingly, a decoupling coordinated control strategy for the SCL and a bidirectional AC-DC interlinking converter (BIC) is proposed based on a small signal model of the entire system and the principle of voltage regulation. The interferences between the SCL and the BIC due to the coupling of control factors are eliminated by the series and parallel decoupling methods that adopt additional current closed-loop control and output voltage feedforward control, respectively. The proposed HMG topology and strategy can ensure the realization of the predesigned functions of dual converters and avoid frequent switching between the grid-tied mode and the island mode, which improves the fault ride-through capability and power quality. Finally, the effectiveness of the proposed approach is verified by simulations and experiments.

키워드

과제정보

The authors acknowledge the financial support of the Natural Science Foundation of Shanxi Province under Project 201701D121134 and the National Natural Science Foundation of China under Project U1610121 and the Major Science and Technology Projects 20181102028 in Shanxi Province and the education, science, culture, health and intelligence introduction Project GDW20181400422.

참고문헌

  1. Nichols, L.D.K., Stevens, J., Lasseter, R.H., Eto, J.H., Vollkommer, H.T.: Validation of the CERTS microgrid concept the CEC/CERTS microgrid testbed. In: 2006 IEEE Power Engineering Society General Meeting (2006)
  2. Jiayi, H., Chuanwen, J., Rong, X.: A review on distributed energy resources and MicroGrid. Renew. Sustain. Energy Rev. 12(9), 2472-2483 (2008) https://doi.org/10.1016/j.rser.2007.06.004
  3. Carrasco, J.M., et al.: Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans. Ind. Electron. 53(4), 1002-1016 (2006) https://doi.org/10.1109/TIE.2006.878356
  4. Chengshan, W., et al.: A nonlinear disturbance observer based DC-bus voltage control for a hybrid AC/DC microgrid. IEEE Trans. Power Electron. 29(11), 6162-6177 (2013) https://doi.org/10.1109/tpel.2013.2297376
  5. Xiong, L., Peng, W., Loh, P.C.: A hybrid AC/DC microgrid and its coordination control. IEEE Trans. Smart Grid 2(2), 278-286 (2011) https://doi.org/10.1109/TSG.2011.2116162
  6. Nejabatkhah, F., Yunwei, L.: Overview of power management strategies of hybrid AC/DC microgrid. IEEE Trans. Power Electron. 30(12), 7072-7089 (2014) https://doi.org/10.1109/TPEL.2014.2384999
  7. Gupta, A., Doolla, S., Chatterjee, K.: Hybrid AC-DC microgrid: systematic evaluation of control strategies. IEEE Trans. Smart Grid 9(4), 1 (2017)
  8. Lihu, J., et al.: Analysis of the transition between multiple operational modes for hybrid AC/DC microgrids. CSEE J. Power Energy Syst. 4(1), 49-57 (2018) https://doi.org/10.17775/cseejpes.2016.01030
  9. Guerrero, J.M., Loh, P.C., Lee, T., Chandorkar, M.: Advanced control architectures for intelligent microgrids-part II: power quality, energy storage, and AC/DC microgrids. IEEE Trans. Ind. Electron. 60(4), 1263-1270 (2013)
  10. Malik, S., Ai, X., Yingyun, S., et al.: Voltage and frequency control strategies of hybrid AC/DC microgrid: a review. IET Gener. Transm. Distrib. 11(2), 303-313 (2016) https://doi.org/10.1049/iet-gtd.2016.0791
  11. Guerrero, J.M., et al.: Advanced control architectures for intelligent microgrids-part I: decentralized and hierarchical control. IEEE Trans. Ind. Electron. 60(4), 1254-1262 (2013) https://doi.org/10.1109/TIE.2012.2194969
  12. Kaushik, R.A., Pindoriya, N.M.: Power flow control of hybrid AC-DC microgrid using master-slave technique. In: 2014 IEEE Conference on Energy Conversion (CENCON), pp. 389-394 (2014)
  13. Karimi, M., Wall, P., et al.: A new centralized adaptive under-frequency load shedding controller for microgrids based on a distribution state estimator. IEEE Trans. Power Deliv. 32(1), 370-380 (2017) https://doi.org/10.1109/TPWRD.2016.2594866
  14. Monadi, M., et al.: Centralized protection strategy for medium voltage DC microgrids. IEEE Trans. Power Deliv. 32(1), 430-440 (2017) https://doi.org/10.1109/TPWRD.2016.2600278
  15. Qing, L., Caldognetto, T., Buso, S.: Flexible control of interlinking converters for DC microgrids coupled to smart AC power systems. IEEE Trans. Ind. Electron. 66(5), 3477-3485 (2019) https://doi.org/10.1109/TIE.2018.2856210
  16. Junjun, W., Chi, J., Peng, W.: A uniform control strategy for the interlinking converter in hierarchical controlled hybrid AC/DC microgrids. IEEE Trans. Ind. Electron. 65(8), 6188-6197 (2018) https://doi.org/10.1109/tie.2017.2784349
  17. Karimi, Y., Oraee, H., Guerrero, J.M.: Decentralized method for load sharing and power management in a hybrid single/three-phase-islanded microgrid consisting of hybrid source PV/battery units. IEEE Trans. Power Electron. 32(8), 6135-6144 (2017) https://doi.org/10.1109/TPEL.2016.2620258
  18. Chi, J., et al.: Autonomous operation of hybrid AC-DC microgrids. In: 2010 IEEE International Conference on Sustainable Energy Technologies (ICSET), pp. 1-7 (2010)
  19. Pengcheng, Y., et al.: A decentralized coordination control method for parallel bidirectional power converters in a hybrid AC/DC microgrid. IEEE Trans. Ind. Electron. 65(8), 6217-6228 (2018) https://doi.org/10.1109/tie.2017.2786200
  20. Nutkani, I.U., et al.: Autonomous power management for interlinked AC-DC microgrids. CSEE J. Power Energy Syst. 4(1), 11-18 (2018) https://doi.org/10.17775/cseejpes.2016.01510
  21. Saeed, P., Mokhtari, H., Blaabjerg, F.: Autonomous operation of a hybrid AC/DC microgrid with multiple interlinking converters. IEEE Trans Smart Grid 9(6), 6480-6488 (2017) https://doi.org/10.1109/tsg.2017.2713941
  22. Nejabatkhah, F., Yunwei, L., Kai, S.: Parallel three-phase interfacing converters operation under unbalanced voltage in hybrid AC/DC microgrid. IEEE Trans, Smart Grid 9(2), 1310-1322 (2018) https://doi.org/10.1109/tsg.2016.2585522
  23. Xiaonan, L., et al.: Virtual impedance based fault current limiters for inverter dominated ac microgrids. IEEE Trans. Smart Grid 9(3), 1599-1612 (2018) https://doi.org/10.1109/TSG.2016.2594811
  24. Sadeghkhani, I., Hamedani Golshan, M.E., Mehrizi-Sani, A., et al.: Low-voltage ride-through of a droop-based three-phase four-wire grid-connected microgrid. IET Gener. Transm. Distrib. 12(8), 1906-1914 (2018) https://doi.org/10.1049/iet-gtd.2017.1306
  25. Xin, Z., Guerrero, J.M., Savaghebi, M., et al.: Low voltage ride-through operation of power converters in grid-interactive microgrids by using negative-sequence droop control. IEEE Trans. Power Electron. 32(4), 3128-3142 (2017) https://doi.org/10.1109/TPEL.2016.2570204