Acknowledgement
Supported by the Heilongjiang Provincial Science Foundation of China (ZD2018012) and the National Nature Science Foundation of China (51677034).
References
- Amjadi, Z., et al.: Power-electronics-based solutions for plug-in hybrid electric vehicle energy storage and management systems. IEEE Trans. Ind. Electron. 57(2), 608-616 (2010) https://doi.org/10.1109/TIE.2009.2032195
- Jia, K., et al.: Historical-data-based energy management in a microgrid with a hybrid energy storage system. IEEE Trans. Ind. Inform. 13(5), 2597-2605 (2017) https://doi.org/10.1109/TII.2017.2700463
- Eldeeb, H.H., et al.: Hybrid energy storage sizing and power splitting optimization for plug-in electric vehicles. IEEE Trans. Ind. Appl. 55(3), 2252-2262 (2019) https://doi.org/10.1109/tia.2019.2898839
- Xiao, J., et al.: Multilevel energy management system for hybridization of energy storages in DC microgrids. IEEE Trans. Smart Grid 7(2), 847-856 (2016) https://doi.org/10.1109/TSG.2015.2424983
- Liu, Y., et al.: Sizing a hybrid energy storage system for maintaining power balance of an isolated system with high penetration of wind generation. IEEE Trans. Power Syst. 31(4), 3267-3275 (2016) https://doi.org/10.1109/TPWRS.2015.2482983
- Khaligh, A., et al.: Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art. IEEE Trans. Veh. Technol. 59(6), 2806-2814 (2010) https://doi.org/10.1109/TVT.2010.2047877
- Wang, H., et al.: Cyber-physical control for energy management of off-road vehicles with hybrid energy storage systems. IEEE/ASME Trans. Mechatron. 23(6), 2609-2618 (2018) https://doi.org/10.1109/tmech.2018.2832019
- Yan, N., et al.: Hybrid energy storage capacity allocation method for active distribution network considering demand side response. IEEE Trans. Appl. Supercond. 29(2), 1-4 (2019)
- Shen, J., et al.: A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system. IEEE Trans. Transp. Electrif. 1(3), 223-231 (2015) https://doi.org/10.1109/TTE.2015.2464690
- Choi, M., et al.: Energy management optimization in a battery/supercapacitor hybrid energy storage system. IEEE Trans. Smart Grid 3(1), 463-472 (2012) https://doi.org/10.1109/TSG.2011.2164816
- Shen, J., et al.: Design and real-time controller implementation for a battery-ultracapacitor hybrid energy storage system. IEEE Trans. Ind. Inform. 12(5), 1910-1918 (2010) https://doi.org/10.1109/TII.2016.2575798
- Ghiassi-Farrokhfal, Y., et al.: Joint optimal design and operation of hybrid energy storage systems. IEEE J. Sel. Areas Commun. 34(3), 639-650 (2016) https://doi.org/10.1109/JSAC.2016.2525599
- Zheng, C., et al.: An energy management strategy of hybrid energy storage systems for electric vehicle applications. IEEE Trans. Sustain. Energy 9(4), 1880-1888 (2018) https://doi.org/10.1109/tste.2018.2818259
- Snoussi, J., et al.: Optimal sizing of energy storage systems using frequency-separation-based energy management for fuel cell hybrid electric vehicles. IEEE Trans. Veh. Technol. 67(10), 9337-9346 (2018) https://doi.org/10.1109/tvt.2018.2863185
- Ju, C., et al.: A two-layer energy management system for micro-grids with hybrid energy storage considering degradation costs. IEEE Trans. Smart Grid 9(6), 6047-6057 (2018) https://doi.org/10.1109/tsg.2017.2703126
- Kotra, S., et al.: Energy management of hybrid microgrid with hybrid energy storage system. In: International Conference on Renewable Energy Research and Applications (ICRERA), pp. 856-860 (2015)
- Kollmeyer, P., et al.: Optimal performance of a full scale li-ion battery and li-ion capacitor hybrid energy storage system for a plug-in hybrid vehicle. In: IEEE Energy Conversion Congress and Exposition (ECCE), pp. 572-577 (2017)
- Azizivahed, A., et al.: A new bi-objective approach to energy management in distribution networks with energy storage systems. IEEE Trans. Sustain. Energy 9(1), 56-64 (2018) https://doi.org/10.1109/tste.2017.2714644
- Kollimalla, S.K., et al.: Design and analysis of novel control strategy for battery and supercapacitor storage system. IEEE Trans. Sustain. Energy 5(4), 1137-1144 (2014) https://doi.org/10.1109/TSTE.2014.2336896
- Shi, Y., et al.: Optimized operation of current-fed dual active bridge DC-DC converter for PV applications. IEEE Trans. Ind. Electron. 62(11), 6986-6995 (2015) https://doi.org/10.1109/TIE.2015.2432093
- Jeung, Y., et al.: Voltage and current regulations of bidirectional isolated dual-active-bridge DC/DC converters based on a double-integral sliding mode control. IEEE Trans. Power Electron. 34(7), 6937-6946 (2019) https://doi.org/10.1109/tpel.2018.2873834
- Gonzales, O., et al.: Sliding mode controller based on a linear quadratic integral regulator surface for power control on a dual active bridge converter. In: IEEE Transactions on Vehicular Technology, pp. 1-6 (2018)
- Golchoubian, P., et al.: Voltage balancing control of IPOS modular dual active bridge DC/DC converters based on hierarchical sliding mode control. IEEE Trans. Veh. Technol. 66(11), 9678-9688 (2017) https://doi.org/10.1109/TVT.2017.2725307
- Duan, J., et al.: Reinforcement-learning-based optimal control for hybrid energy storage systems in hybrid. IEEE Trans. Ind. Inform. (2019). https://doi.org/10.1109/tii.2019.2896618
- Shih, P., et al.: Reinforcement-learning-based dual-control methodology for complex nonlinear discrete-time systems with Application to spark engine EGR operation. IEEE Trans. Neural Netw. 19(8), 1369-1388 (2008) https://doi.org/10.1109/TNN.2008.2000452
- Xiongyang, et al.: Neural-network-based online optimal control for uncertain non-linear continuous-time systems with control constraints. IET Control Theory Appl. 7(17), 2037-2047 (2013) https://doi.org/10.1049/iet-cta.2013.0472
- Qin, H., et al.: Generalized average modeling of dual active bridge DC-DC converter. IEEE Trans. Power Electron. 27(4), 2078-2084 (2012) https://doi.org/10.1109/TPEL.2011.2165734
Cited by
- Practical Controller Design of Three-Phase Dual Active Bridge Converter for Low Voltage DC Distribution System vol.9, pp.12, 2020, https://doi.org/10.3390/electronics9122101