DOI QR코드

DOI QR Code

Rotor ground-fault diagnosis methods for synchronous condensers based on amplitude and phase-angle of voltage

  • Jiang, Mengyao (College of Energy and Electrical Engineering, Hohai University) ;
  • Ma, Hongzhong (College of Energy and Electrical Engineering, Hohai University) ;
  • Zhao, Shuai (College of Energy and Electrical Engineering, Hohai University) ;
  • Tang, Xiaozheng (Maintenance Branch Company of the State Grid Jiangsu Electric Power Co., Ltd.) ;
  • Liu, Yidan (Maintenance Branch Company of the State Grid Jiangsu Electric Power Co., Ltd.)
  • Received : 2020.02.18
  • Accepted : 2020.05.20
  • Published : 2020.09.20

Abstract

A single ground fault of the rotor windings in a synchronous condenser can cause serious damage if the fault is not eliminated in time. This paper proposes a new rotor ground-fault diagnosis method for synchronous condensers based on the amplitude of the 150 Hz component of the voltage across a grounding resistance (GR) placed in the neutral of an excitation transformer. It can be seen that the amplitude of the 150 Hz component of the voltage across the GR increases with a decrease of the ground-fault resistance (GFR). This method is an improvement of existing algorithms for rotor ground-fault detection that requires less analyzing and can achieve online detection of the severity of a rotor ground fault at any point of the excitation winding. In addition, the influence of different excitation voltages on the algorithm based on phase-angle is analyzed considering actual working characteristics. Moreover, a model is built in the MATLAB/Simulink platform using the real parameters of a TTS-300-2 synchronous condenser to verify the effectiveness of the proposed method. Finally, a dual diagnostic criterion is given according to the results of simulations. The research conclusions can have a great significance on the healthy running of synchronous condensers and they can help to drastically reduce both cost and repair time.

Keywords

Acknowledgement

This work was funded in part by the Science and Technology Projects of Jiangsu Electric Power Corporation, grant number J2019114, in part by National Natural Science Foundation of China, grant number 51577050.

References

  1. Fan, S. X., Han, W., Li, L. X., Wang, W., Zhang, P., Fu, J. Y., Hu, Y. P., Xu, G. R.: Influence of synchronous condenser exciter limit on voltage stability of HVDC. In: Proc. IEEE Conference On Industrial Electronics And Applications, pp 210-215 (2018)
  2. Fan, S. X., Han, W., Li, L. X., Wang, W., Zhang, P., Fu, J. Y., Luo, C. L., Xu, G. R.: Influence of synchronous condenser transient parameters on voltage stability of HVDC. In: Proc. IEEE Conference on Industrial Electronics and Applications, 2015-2020 (2018)
  3. Zhang, K. Y., Cui, Y., Yang, Z. H., Feng, Y.,Y., Zhang, Q. Q., Yu, Y. H.: Analysis of the infuence of synchronous condensers on receiving-end grid with multi-infeed HVDC. In: Proc. IEEE International Conference on Power System Technology (2016).
  4. Pu, Y. Q., Zhong, D., Li, X., Hu Y. P., Xu, G. R.: Influence of synchronous condenser on voltage stability of HVDC. In: Proc. IEEE Power & Energy Society General Meeting, 5-10 (2018)
  5. Sha, J.B., Zhao, C.Y., Wang, Q., Guo, C.Y., Yang, P.C.: Impact of synchronous condensers on maximum available power of UHVDC system. High Voltage Eng. 45(11), 3627-3634 (2019)
  6. Xiao, F. Y., Zhou, B., Ruan, L., Zhou, K. P., Wang, T., Cao, K.: Study on coordinated control strategy of reactive power compensation device in DC converter station with new-generation synchronous condensers. In: Proc. International Conference on Power System Technology, 2966-2971 (2018)
  7. Teleke, S., Abdulahovic, T., Thiringer, T., Svensson, J.: Dynamic performance comparison of synchronous condenser and SVC. IEEE Trans. Power Delivery. 23(3), 1606-1612 (2008) https://doi.org/10.1109/TPWRD.2007.916109
  8. Menezes, T.V., da Silva, L.C.P., da Costa, V.F.: Dynamic var sources scheduling for improving voltage stability margin. IEEE Trans. Power Syst. 18(2), 969-971 (2003) https://doi.org/10.1109/TPWRS.2003.811162
  9. Xiao, F., Zhou, Y. B., Ruan, L., Zhou K.P., Wang, T., Cao, K., Rao, Y. Z.: Study on transient reactive power characteristics of new-generation large synchronous condenser. In: Proc. China International Conference on Electricity Distribution, 1851-1855 (2018)
  10. Gritli, Y., Zarri, L., Rossi, C., Filippetti, F., Capolino, G.A., Casadei, D.: Advanced diagnosis of electrical faults in wound-rotor induction machines. IEEE Ind. Electron. Mag. 60(9), 4012-4021 (2013) https://doi.org/10.1109/TIE.2012.2236992
  11. Henao, H., Capolino, G.A., Fernandez-Cabanas, M., Filippetti, F., Bruzzese, C., Strangas, E., Pusca, R., Estima, J., Riera-Guasp, M., Hedayati-Kia, S.: Trends in fault diagnosis for electrical machines: a review of diagnostic techniques. IEEE Ind. Electron. Mag. 8(2), 31-42 (2014) https://doi.org/10.1109/MIE.2013.2287651
  12. Seshadrinath, J., Singh, B., Panigrahi, B.K.: Vibration analysis based interturn fault diagnosis in induction machines. IEEE Trans. Ind. Informat. 10(1), 340-350 (2014) https://doi.org/10.1109/TII.2013.2271979
  13. Zarri, L., Mengoni, M., Gritli, Y., Tani, A., Filippetti, F., Serra, G., Casadei, D.: Detection and localization of stator resistance dissymmetry based on multiple reference frame controllers in multiphase induction motor drives. IEEE Trans. Ind. Electron. 60(8), 3506-3518 (2013) https://doi.org/10.1109/TIE.2012.2235393
  14. Concari, C., Franceschini, G., Tassoni, C., Toscani, A.: Validation of a faulted rotor induction machine model with an insightful geometrical interpretation of physical quantities. IEEE Trans. Ind. Electron. 60(9), 4074-4083 (2013) https://doi.org/10.1109/TIE.2012.2228142
  15. Biet, M.: Rotor faults diagnosis using feature selection and nearest neighbors rule: application to a turbogenerator. IEEE Trans. Ind. Electron. 60(9), 4063-4073 (2013) https://doi.org/10.1109/TIE.2012.2218559
  16. Bruzzese, C.: Diagnosis of eccentric rotor in synchronous machines by analysis of split-phase currents-Part I: theoretical analysis. IEEE Trans. Ind. Electron. 61(8), 4193-4205 (2014) https://doi.org/10.1109/TIE.2013.2284141
  17. Bruzzese, C.: Diagnosis of eccentric rotor in synchronous machines by analysis of split-phase currents-Part II: experimental analysis. IEEE Trans. Ind. Electron. 61(8), 4206-4216 (2014) https://doi.org/10.1109/TIE.2013.2284554
  18. Kiani, M., Lee, W-J., Kenarangui, R., Fahimi, B. Detection of rotor faults in synchronous generators. In: Proc. IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 266-271 (2007)
  19. Stone, G.C.: Recent important changes in IEEE motor and generator winding insulation diagnostic testing standards. IEEE Trans. Ind. Appl. 41, 91-100 (2005) https://doi.org/10.1109/TIA.2004.840977
  20. Maughan, C.V., Reschovsky, J.M. Advances in motor and generator rotor health. In: Proc. IEEE International Symposium on Electrical Insulation, 1-4 (2010)
  21. Miller, M.L. General concepts related to turbine generator insulation materials used in rotor windings. In: Proc. IEEE Electrical Insulation Conference, 328-332 (2009)
  22. Boulter, E.A., Stone, G.C.: Historical development of rotor and stator winding insulation materials and systems. IEEE Electr. Insul. Mag. 20(3), 25-39 (2004) https://doi.org/10.1109/MEI.2004.1307083
  23. Li, Z., Lu, J., Qiu, X.H., Ji, X.J., Liu, H.B.: Injecting square wave voltage type ground fault protection for generator rotor based on redundancy sampling and calculation. Auto. Electr. Power Syst. 6(16), 98-101 (2012)
  24. Chen, X.M., Xiong, L.G., Zhou, R.B., Zhang, Q.X., Zhu, L.L., Mao, C.L.: Improved algorithm for rotor earth fault protection in resistor divider mode. Auto. Electr. Power Syst. 37(22), 90-95 (2013)
  25. Kiani, M., Lee, W. J., Kenarangui, R., Fahimi, B.: Frequency domain methods for detection of rotor faults in synchronous machines under no-load condition. In: Proc. North American Power Symposium, 31-36 (2007)
  26. Stoll, R. L., Hennache, A.: Method of detecting and modelling presence of shorted turns in DC feld winding of cylindrical rotor synchronous machines using two airgap search coils. In: IEE Proceedings B-Electric Power Applications, 281-294 (1988)
  27. Gaona, C.A.P., Blazquez, F., Frias, P., Redondo, M.: A novel rotor ground-fault-detection technique for synchronous machines with static excitation. IEEE Trans. Energy Convers. 25(4), 965-973 (2010) https://doi.org/10.1109/TEC.2010.2040739
  28. Platero, C.A., Blazquez, F., Frias, P., Pardo, M.: New on-line rotor ground fault location method for synchronous machines with static excitation. IEEE Trans. Energy Convers. 26(2), 572-580 (2011) https://doi.org/10.1109/TEC.2010.2095501
  29. Blanquez, F.R., Aranda, M., Rebollo, E., Blazquez, F., Platero, C.A.: New fault-resistance estimation algorithm for rotor-winding ground fault on-line location in synchronous machines with static excitation. IEEE Trans. Ind. Electron. 62(3), 1901-1911 (2015) https://doi.org/10.1109/TIE.2014.2336612
  30. Blanquez, F.R., Platero, C.A., Rebollo, E., Blazquez, F.: Novel rotor ground-fault detection algorithm for synchronous machines with static excitation based on third-harmonic voltage-phasor comparison. IEEE Trans. Ind. Electron. 63(4), 2548-2558 (2016) https://doi.org/10.1109/TIE.2015.2497214