DOI QR코드

DOI QR Code

Robust sensorless FCS-PCC control for inverter-based induction machine systems with high-order disturbance compensation

  • Wang, Junxiao (College of Information Engineering, Zhejiang University of Technology) ;
  • Wang, Fengxiang (Quanzhou Institute of Equipment Manufacturing Haixi Institute, Chinese Academy of Science)
  • 투고 : 2020.01.29
  • 심사 : 2020.06.10
  • 발행 : 2020.09.20

초록

Due to its theoretically fast dynamic response with unlimited bandwidth for direct switch-driven-based induction machines, the finite control set predictive current control (FCS-PCC) method has been verified to be an effective solution in recent years. However, dynamic limitations of the outer speed PI controller exist, especially with high-order time-varying disturbances. In addition, hardware cost can be reduced. Using the universal proportional integral observer (UPIO) method, a robust deadbeat-like encoderless-based FCS-PCC control scheme is investigated for induction machine systems in this paper. The encoder is avoided using the proposed sensorless method. In addition, the system response and disturbance attenuation are enhanced in presence of time-varying unknown load torque and uncertainties. The squared norm is adopted for the cost function design to ensure system stability. Experimental results illustrate that it has good performance such as fast dynamics, good low-speed steady-state accuracy, and robustness.

키워드

과제정보

This work was supported in part by National Natural Science Foundation (NNSF) of China under Grants (61803335, 51877207), the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY20F030016, and the Talent Project of Zhejiang Association for Science and Technology under Grant No. SKX201901.

참고문헌

  1. Casadei, D., Profumo, F., Serra, G., Tani, A.: FOC and DTC: two viable schemes for induction motors torque control. IEEE Trans. Power Electron. 17(5), 779-787 (2002) https://doi.org/10.1109/TPEL.2002.802183
  2. Pellegrino, G., Armando, E., Guglielmi, P.: Direct flux field-oriented control of IPM drives with variable DC link in the fieldweakening region. IEEE Trans. Ind. Appl. 45(5), 1619-1627 (2009) https://doi.org/10.1109/tia.2009.2027167
  3. Robyns, B., Berthereau, F., Hautier, J.-P., Buyse, H.: A fuzzy-logic-based multimodel field orientation in an indirect FOC of an induction motor. IEEE Trans. Ind. Electron. 47(2), 380-388 (2000) https://doi.org/10.1109/41.836353
  4. Buja, G., Kazmierkowski, M.: Direct torque control of PWM inverterfed AC motors-a survey. IEEE Trans. Ind. Electron. 51(4), 744-757 (2004) https://doi.org/10.1109/TIE.2004.831717
  5. Zhang Y., Zhu J., Zhao Z., Xu W., Dorrell D.: An improved direct torque control for three-level inverter-fed induction motor sensorless drive. IEEE Trans. Power Electron. 27(3), 1502-1513 (2012) https://doi.org/10.1109/TPEL.2010.2043543
  6. Ambrozic, V., Nedeljkovic, D., Nemec, M.: Predictive torque control of induction machines using immediate flux control. IEEE Trans. Ind. Electron. 54(4), 2009-2017 (2007) https://doi.org/10.1109/TIE.2007.895133
  7. Preindl, M., Bolognani, S.: Model predictive direct speed control with finite control set of PMSM drive systems. IEEE Trans. Power Electron. 28(2), 1007-1015 (2013) https://doi.org/10.1109/TPEL.2012.2204277
  8. Kennel, R.M., Kazmierkowski, M., Rodriguez, J., Cortes, P.: Predictive control in power electronics and drives. IEEE Trans. Ind. Electron. 55(12), 4312-4324 (2008) https://doi.org/10.1109/TIE.2008.2007480
  9. Karamanakos, P., Geyer, T., Kennel, R.: On the choice of norm in finite control set model predictive control. IEEE Trans. Power Electron. 33(8), 7105-7117 (2017) https://doi.org/10.1109/TPEL.2017.2756092
  10. Geyer, T.: Computationally efcient model predictive direct torque control. IEEE Trans. Power Electron. 26(10), 2804-2816 (2011) https://doi.org/10.1109/TPEL.2011.2121921
  11. Geyer, T.: Model predictive direct torque control: derivation and analysis of the state-feedback control law. IEEE Trans. Ind. Appl. 49(5), 2146-2157 (2013) https://doi.org/10.1109/TIA.2013.2262255
  12. Norambuena, M., Rodriguez, J., Zhang, Z., Wang, F., Garcia, C., Kennel, R.: A very simple strategy for high-quality performance of AC machines using model predictive control. IEEE Trans. Power Electron. 34(1), 794-800 (2019) https://doi.org/10.1109/TPEL.2018.2812833
  13. Rodriguez, J., Pontt, J., Silva, C.A., Correa, P., Lezana, P., Cortes, P., Ammann, U.: Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron. 54(1), 495-503 (2007) https://doi.org/10.1109/TIE.2006.888802
  14. Young, H.A., Perez, M.A., Rodriguez, J.: Analysis of finite-control-set model predictive current control with model parameter mismatch in a three-phase inverter. IEEE Trans. Ind. Electron. 63(5), 3100-3107 (2016) https://doi.org/10.1109/TIE.2016.2515072
  15. Zhang, Y., Bai, Y., Yang, H.: A universal multiple-vector-based model predictive control of induction motor drives. IEEE Trans. Pow. Electron. 33(8), 6957-6969 (2018) https://doi.org/10.1109/TPEL.2017.2754324
  16. Vazquez, S., Rodriguez, J., Rivera, M., Franquelo, L.G., Norambuena, M.: Model predictive control for power converters and drives: advances and trends. IEEE Trans. Ind. Electron. 64(2), 935-947 (2017) https://doi.org/10.1109/TIE.2016.2625238
  17. Wang, F., Li, S., Mei, X., Xie, W., Rodriguez, J., Kennel, R.M.: Model based predictive direct control strategies for electrical drives: an experimental evaluation of PTC and PCC methods. IEEE Trans. Ind. Informat. 11(3), 671-681 (2015) https://doi.org/10.1109/TII.2015.2423154
  18. Holtz, J., Quan, J.: Drift and parameter compensated flux estimator for persistent zero stator frequency operation of sensorless controlled induction motors. IEEE Trans. Ind. Appl. 39(4), 1052-1060 (2003) https://doi.org/10.1109/TIA.2003.813726
  19. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900-906 (2009) https://doi.org/10.1109/TIE.2008.2011621
  20. Yang, J., Wu, H., Hu, L.: Robust predictive speed regulation of converter-driven DC motors via a discrete-time reduced-order GPIO. IEEE Trans. Ind. Electron. 66(10), 7893-7903 (2018) https://doi.org/10.1109/tie.2018.2878119
  21. Yang, J., Wu, H., Hu, L., Li, S.: Robust speed regulation for PMSM servo system with multiple sources of disturbances via an augment-ed disturbance observer. IEEE Trans. Mechatron. 23(2), 769-780 (2018) https://doi.org/10.1109/TMECH.2018.2799326
  22. Nakao, M., Ohnishi, K., Miyachi, K.: Robust decentralized joint control based on interference estimation, in Robotics and Automation. IEEE Int. Conf. 4, 326-331 (1987)
  23. Chen, W., Yang, J., Guo, L., Li, S.: Disturbance observer based control and related methods-an overview. IEEE Trans. Ind. Electron. 63(2), 1083-1095 (2016) https://doi.org/10.1109/TIE.2015.2478397
  24. Chen, W., Yang, J., Guo, L., Li, S.: Disturbance observer based control: methods and applications, CRC press, (2014)
  25. Sira-Ramirez, H., Oliver-Salazar, M.A.: On the robust control of buck converter dc motor combinations. IEEE Trans. Power Electron. 28(8), 3912-3922 (2013) https://doi.org/10.1109/TPEL.2012.2227806
  26. Holz, J.: Sensorless control of induction machines with or without signal injections. IEEE Trans. Ind. Electron. 53(1), 7-30 (2006) https://doi.org/10.1109/TIE.2005.862324
  27. Sun, W., Gao, J., Yu, Y., Wang, G., Xu, D.: Robustness improvement of speed estimation in speed-sensorless induction motor drives. IEEE Trans. Ind. Appl. 52(3), 2525-2536 (2016) https://doi.org/10.1109/TIA.2015.2512531
  28. Sun, X., Cao, J., Lei, G., Guo, Y., Zhu, J.: Speed sensorless control for permanent magnet synchronous motors based on finite position set. IEEE Trans. Ind. Electron. 30(2), 1557-9948 (2019)
  29. Wang, G., Yang, R., Xu, D.: DSP-based control of sensorless IPMSM drives for wide-speed-range operation. IEEE Trans. Ind. Electron. 60(2), 720-727 (2013) https://doi.org/10.1109/TIE.2012.2205360
  30. Kim, Y., Sul, S., Park, M.P.: Speed sensorless vector control of induction motor using extended kalman flter. IEEE Trans. Ind. Appl. 30(5), 1225-1233 (1994) https://doi.org/10.1109/28.315233
  31. Davari, S.A., Khaburi, D.A., Wang, F., Kennel, R.M.: Using full order and reduced order observers for robust sensorless predictive torque control of induction motors. IEEE Trans. Power Electron. 27(7), 3424-3433 (2012) https://doi.org/10.1109/TPEL.2011.2179812
  32. Lascu, C., Boldea, I., Blaabjerg, F.: Direct torque control of sensorless induction motor drives: a sliding-mode approach. IEEE Trans. Ind. Electron. 40(2), 582-590 (2004)
  33. Sun, X., Cao, J., Lei, G., Guo, Y., Zhu, J.: speed sensorless control for permanent magnet synchronous motors based on finite position set. IEEE Trans. Ind. Electron. 67(7), 6089-6100 (2020) https://doi.org/10.1109/tie.2019.2947875
  34. Sun, X., Hu, C., Lei, G., Yang, Z., Guo, Y., Zhu, J.: speed sensorless control of SPMSM drives for EVs with a binary search algorithm-based phase-locked loop. IEEE Trans. Veh. Technol. 69(5), 4968-4978 (2020) https://doi.org/10.1109/tvt.2020.2981422

피인용 문헌

  1. Finite control set model predictive control integrated with disturbance observer for battery energy storage power conversion system vol.21, pp.2, 2020, https://doi.org/10.1007/s43236-020-00197-2
  2. Continuous Control Set Predictive Current Control for Induction Machine vol.11, pp.13, 2020, https://doi.org/10.3390/app11136230
  3. Development of an Automatic Elastic Torque Control System Based on a Two-Mass Electric Drive Coordinate Observer vol.9, pp.12, 2020, https://doi.org/10.3390/machines9120305