Acknowledgement
Funding was provided by Fundamental Research Funds for the Central Universities (CN) (xjj2018007).
References
- Kim, S.: Moment of inertia and friction torque coefficient identification in a servo drive system. IEEE Trans. Ind. Electron. 66(1), 60-70 (2019) https://doi.org/10.1109/tie.2018.2826456
- Thounthong, P., Sikkabut, S., Poonnoi, N., et al.: Nonlinear differential fatness based speed/torque control with state-observers of permanent magnet synchronous motor drives. IEEE Trans. Ind. Appl. 54(3), 2874-2884 (2018) https://doi.org/10.1109/tia.2018.2800678
- Chaoui, H., Khayamy, M., Okoye, O., et al.: Simplified speed control of permanent magnet synchronous motors using genetic algorithms. IEEE Trans. Power Electron. 34(4), 3563-3574 (2018) https://doi.org/10.1109/tpel.2018.2851923
- Xu, Y., Hou, Y., Li, Z.: Robust predictive speed control for SPMSM drives based on extended state observers. J. Power Electron. 19(2), 497-508 (2019) https://doi.org/10.6113/JPE.2019.19.2.497
- Chen, J., Yao, W., Ren, Y., et al.: Nonlinear adaptive speed control of a permanent magnet synchronous motor: a perturbation estimation approach. Control Eng. Pract. 85, 163-175 (2019) https://doi.org/10.1016/j.conengprac.2019.01.019
- Aghili, F.: Optimal feedback linearization control of interior PM synchronous motors subject to time-varying operation conditions minimizing power loss. IEEE Trans. Ind. Electron. 65(7), 5414-5421 (2018) https://doi.org/10.1109/tie.2017.2784348
- Xu, B., Shen, X., Ji, W., et al.: Adaptive nonsingular terminal sliding model control for permanent magnet synchronous motor based on disturbance observer. IEEE Access. 6, 48913-48920 (2018) https://doi.org/10.1109/access.2018.2867463
- Preindl, M., Bolognani, S.: Model predictive direct speed control with finite control set of PMSM drive systems. IEEE Trans Power Electron. 28(2), 1007-1015 (2013) https://doi.org/10.1109/TPEL.2012.2204277
- Sousy, E., Fayez, F.: Robust recurrent wavelet interval type-2 fuzzy-neural-network control for DSP-based PMSM servo drive systems. J. Power Electron 13(1), 139-160 (2013) https://doi.org/10.6113/JPE.2013.13.1.139
- Lin, F., Hung, Y., Ruan, K.: An intelligent second -order sliding-mode control for an electric power steering system using a wavelet fuzzy neural network. IEEE Trans. Fuzzy Syst. 22(6), 1598-1611 (2014) https://doi.org/10.1109/TFUZZ.2014.2300168
- Zhang, X., Sun, L., Zhao, K.: Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques. IEEE Trans. Power Electron. 28(3), 1358-1365 (2013) https://doi.org/10.1109/TPEL.2012.2206610
- Li, S., Zong, K., Liu, H.: A composite speed controller based on a second-order model of permanent magnet synchronous motor system. Trans. Inst. Meas. Control 33(5), 522-541 (2011) https://doi.org/10.1177/0142331210371814
- Bu, X., Wu, X., Zhang, R., et al.: Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle. J. Frankl. Inst. Eng. Appl. Math. 352(4), 1739-1765 (2015) https://doi.org/10.1016/j.jfranklin.2015.01.014
- Dai, X., Gao, Z., Breikin, T., et al.: High-gain observer-based estimation of parameter variations with delay alignment. IEEE Trans Autom. Control 57(3), 726-732 (2012) https://doi.org/10.1109/TAC.2011.2169635
- Liu, J., Vazquez, S., Wu, L., et al.: Extended state observer based sliding mode control for three-phase power converters. IEEE Trans. Ind. Electron. 64(1), 22-31 (2016) https://doi.org/10.1109/TIE.2016.2610400
- Mercorelli, P.: A two-stage sliding-mode high-Gain observer to reduce uncertainties and disturbances effects for sensorless control in automotive applications. IEEE Trans. Ind. Electron. 62(9), 5929-5940 (2015) https://doi.org/10.1109/TIE.2015.2450725
- Cunha, J., Costa, R., Lizarralde, F.: Peaking free variable structure control of uncertain linear systems based on a high-gain observer. Automatica 45(5), 1156-1164 (2009) https://doi.org/10.1016/j.automatica.2008.12.018
- Khalil, H., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control 24(6), 993-1015 (2014) https://doi.org/10.1002/rnc.3051
- Prasov, A., Khalil, H.: A nonlinear high-gain observer for systems with measurement noise in a feedback control framework. IEEE Trans. Autom. Control 58(3), 569-580 (2013) https://doi.org/10.1109/TAC.2012.2218063
- Niu, X., Zhang, C., Li, H.: Active disturbance attenuation control for permanent magnet synchronous motor via feedback domination and disturbance observer. IET Control Theory Appl. 11(6), 807-815 (2017) https://doi.org/10.1049/iet-cta.2016.1429
- Zhao, L., Huang, J., Liu, H., et al.: Second-order sliding-mode observer with online parameter identification for sensorless induction motor drives. IEEE Trans. Ind. Electron. 61(10), 5280-5289 (2014) https://doi.org/10.1109/TIE.2014.2301730
- Wang, H., Ge, X., Liu, Y.: Second-order sliding-mode MRAS observer based sensorless vector control of linear induction motor drives for medium-low speed maglev applications. IEEE Trans. Ind. Electron. 65(12), 9938-9952 (2018) https://doi.org/10.1109/tie.2018.2818664
- Biricik, S., Komurcugil, H.: Optimized sliding mode control to maximize existence region for single-phase dynamic voltage restorers. IEEE Trans. Ind. Informat. 12(4), 1486-1497 (2016) https://doi.org/10.1109/TII.2016.2587769
- Sira-Ramirez, H., Linares-Flores, J., Garcia-Rodriguez, C., et al.: On the control of the permanent magnet synchronous motor: an active disturbance rejection control approach. IEEE Trans. Control Syst Technol. 22(5), 2056-2063 (2014) https://doi.org/10.1109/TCST.2014.2298238
- Liu, X., Shan, Z.B., Li, Y.C.: Dynamic boundary layer based neural network quasi-sliding mode control for soft touching down on asteroid. Adv. Space Res. 59(8), 2173-2185 (2017) https://doi.org/10.1016/j.asr.2017.01.046
- He, W., Huang, B., Dong, Y., et al.: Adaptive neural network control for robotic manipulators with unknown deadzone. IEEE Trans. Cybern. 48(9), 2670-2682 (2018) https://doi.org/10.1109/tcyb.2017.2748418
- Kenne, G., Fotso, A., Lamnabhi, L.: A new adaptive control strategy for a class of nonlinear system using RBF neuro-sliding-mode technique: application to SEIG wind turbine control system". Int. J. Control 90(4), 855-872 (2017) https://doi.org/10.1080/00207179.2016.1213423
- Liu, L., Wang, D., Peng, Z., et al.: Bounded neural network control for target tracking of underactuated autonomous surface vehicles in the presence of uncertain target dynamics. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 1241-1249 (2019) https://doi.org/10.1109/tnnls.2018.2868978
- Xu, B., Wang, D., Zhang, Y., et al.: DOB based neural control of flexible hypersonic flight vehicle considering wind effects. IEEE Trans. Ind. Electron. 64(11), 8676-8685 (2017) https://doi.org/10.1109/TIE.2017.2703678
- Yin, Y., Liu, J., Sanchez, J., et al.: Observer-based adaptive sliding mode control of NPC converters: an RBF neural network approach. IEEE Trans. Power Electron. 34(4), 3831-3841 (2019) https://doi.org/10.1109/tpel.2018.2853093
- Kommuri, S., Defoort, M., Karimi, H., et al.: A robust observer based sensor fault-tolerant control for PMSM in electric vehicles. IEEE Trans. Ind. Electron. 63(12), 7671-7681 (2016) https://doi.org/10.1109/TIE.2016.2590993
- Golubev, A., Krishchenko, A., Tkachev, S.: Stabilization of nonlinear dynamic systems using the system state estimates made by the asymptotic observer. Autom. Remote Control 66(7), 1021-1058 (2005) https://doi.org/10.1007/s10513-005-0147-5