DOI QR코드

DOI QR Code

Method of estimating initial rotor position for IPMSMs using subdivided voltage vectors based on inductance variation

  • Cho, Dae-Hyun (Department of Electrical and Computer Engineering, Ajou University) ;
  • Bak, Yeongsu (Department of Electrical and Computer Engineering, Ajou University) ;
  • Lee, Kyo-Beum (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2020.03.10
  • Accepted : 2020.05.31
  • Published : 2020.09.20

Abstract

This paper proposes a method for estimating the initial rotor position for an interior permanent-magnet synchronous motor (IPMSM) using subdivided voltage vectors based on inductance variation. Since the stator inductance of an IPMSM varies depending on the rotor position, the current that flows through the entire IPMSM drive system can be different depending on the rotor position when a voltage vector is applied to the stator winding of the IPMSM. Therefore, the rotor position can be estimated using the differences in the currents. In the conventional method, which uses six voltage vectors to estimate the initial rotor position, the estimated position error is increased in specific regions where the phase angle of the applied voltage vector is remarkably different from that of the N pole of the rotor. This paper presents an advanced method using subdivided voltage vectors to estimate the initial rotor position more precisely in a specific region. The effectiveness of the advanced estimation method is verified by simulation and experimental results.

Keywords

Acknowledgement

This research was supported by Korea Electric Power Corporation (Grant No. R19XO01-20) and a Grant (20RTRP-B146008-03) from the Railroad Technology Research Program funded by the Ministry of Land, Infrastructure and Transport of the Korean government.

References

  1. Lee, K.-B.: PMSM sensorless control. In: Lee, K.-B. (Ed) Advanced power electronics. 1st Edition, pp. 317-340. Munundang, Seoul (2019)
  2. Yoon, T.-M., Lee, J.-S., Lee, K.-B.: Rotor position estimation method of IPMSM using HF signal injection and sliding-mode controller. IEEJ Trans. Electr. Electron Eng. 9(S1), S56-S63 (2014)
  3. Seo, D.-W., Bak, Y., Lee, K.-B.: An improved rotating restart method for a sensorless permanent magnet synchronous motor drive system using repetitive zero voltage vectors. IEEE Trans. Ind. Electron 67(5), 3496-3504 (2020) https://doi.org/10.1109/tie.2019.2914647
  4. Kang, Y.-K., Jeong, H.-G., Lee, K.-B., Lee, D.-C., Kim, J.-M.: Simple estimation scheme for initial rotor position and inductances for effective MTPA-operation in wind-power systems using an IPMSM. J. Power Electron 10(4), 396-404 (2010) https://doi.org/10.6113/JPE.2010.10.4.396
  5. Bak, Y., Lee, K.-B.: Constant speed control of a permanent-magnet synchronous motor using a reverse matrix converter under variable generator input conditions. IEEE J. Emerg. Sel. Topics Power Electron 6(1), 315-326 (2018) https://doi.org/10.1109/jestpe.2017.2715046
  6. Zhao, B., Li, H., Mao, J.: Double-objective finite control set model-free predictive control with DSVM for PMSM drives. J. Power Electron 19(1), 168-178 (2019) https://doi.org/10.6113/JPE.2019.19.1.168
  7. Shen, H., Xu, J., Yu, B., Tang, Q., Chen, B., Lou, C., Qiao, Y.: Seamless transition strategy for wide speed-range sensorless ipmsm drives with a virtual Q-axis inductance. J. Power Electron 19(5), 1224-1234 (2019) https://doi.org/10.6113/jpe.2019.19.5.1224
  8. Lee, D.-H.: Combined sensor-sensorless control of PMDC motor for HD camera of unmanned monitoring system. J. Electr. Eng. Technol. 15(1), 27-35 (2020) https://doi.org/10.1007/s42835-019-00310-x
  9. Jeong, Y.-S., Lorenz, R.D., Jahns, M., Sul, S.-K.: Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods. IEEE Trans. Ind. Appl. 41(1), 38-45 (2005) https://doi.org/10.1109/TIA.2004.840978
  10. Kim, K.Y., Bak, Y., Lee, K.-B.: Initial rotor position estimation of an IPMSM based on least squares approximation with a polarity identifcation. Trans. Korean Inst. Power Electr. 23(1), 72-75 (2018) https://doi.org/10.6113/TKPE.2018.23.1.72
  11. Holtz, J.: Acquisition of position error and magnet polarity for sensorless control of pm synchronous machine. IEEE Trans. Ind. Appl. 44(4), 1172-1180 (2008) https://doi.org/10.1109/TIA.2008.921418
  12. Xu, P., Zhu, Z.Q.: Initial rotor position estimation using zero-sequence carrier voltage for permanent-magent synchronous machines. IEEE Trans. Ind. Electon. 64(1), 149-158 (2017) https://doi.org/10.1109/TIE.2016.2596703
  13. Nakashima, S., Inagaki, Y., Miki, I.: Sensorless initial rotor position estimation of surface permanent-magnet synchronous motor. IEEE Trans. Ind. Appl. 36(6), 1598-1603 (2000) https://doi.org/10.1109/28.887211
  14. Lee, W.-J., Sul, S.-K.: A new starting method of BLDC motors without position sensor. IEEE Trans. Ind. Appl. 42(6), 1532- 1538 (2006) https://doi.org/10.1109/TIA.2006.882668
  15. Ostlund, S., Brokemper, M.: Sensorless rotor position detection from zero to rated speed for an integrated PM synchronous motor drive. IEEE Trans. Ind. Appl. 32(5), 1158-1165 (1996) https://doi.org/10.1109/28.536878
  16. Schmidt, P. B., Gasperi, M. L., Ray, G., Wijenayake, A. H.: Initial rotor angle detenction of a non-salient pole permanent magnet synchronous machine. Proc. IEEE Ind. Appl. Society Annual Meeting, 459-463 (1997)
  17. Park, N.-C., Lee, Y.-K., Kim, S.-H.: Initial rotor position estimation for an interior permanent-magnet synchronous motor using inductance saturation. Trans. Korean Inst. Power Electr. 16(4), 374-381 (2011) https://doi.org/10.6113/TKPE.2011.16.4.374
  18. Lee, C.-H., Lee, J.: An optimal damping control algorithm of direct two-level inverter for miniaturization and weight reduction of auxiliary power supply on railway vehicle. J. Electr. Eng. Technol. 13(6), 2335-2343 (2018) https://doi.org/10.5370/JEET.2018.13.6.2335
  19. Zhang, T., Chen, X., Qi, C., Lang, Z.: Leg-By-Leg-based finite-control-set model predictive control for two-level voltage-source inverters. J. Power Electron. 19(5), 1162-1170 (2019) https://doi.org/10.6113/jpe.2019.19.5.1162

Cited by

  1. Rotor position estimation over entire speed range of interior permanent magnet synchronous motors vol.21, pp.4, 2020, https://doi.org/10.1007/s43236-021-00217-9
  2. Simplified model predictive current control strategy for open-winding permanent magnet synchronous motor drives vol.21, pp.6, 2020, https://doi.org/10.1007/s43236-021-00237-5