Acknowledgement
This research was supported by Korea Electrotechnology Research Institute (KERI) Primary research program through the National Research Council of Science & Technology (NST) funded by the Ministry of Science and ICT (MSIT) (No. 18-12-N0101-35).
References
- Uddin, M.N., Radwan, T.S., George, G.H., Rahman, M.A.: Performance of current controllers for VSI-fed IPMSM drive. IEEE Trans. Ind. Appl. 36(6), 1531-1538 (2000) https://doi.org/10.1109/28.887203
- Cho, H., Ko, K., Choi, J., Shin, H., Jang, S.: Rotor natural frequency in high-speed permanent-magnet synchronous motor for turbo-compressor application. IEEE Trans. Magn. 47(10), 4258-4261 (2011) https://doi.org/10.1109/TMAG.2011.2152378
- Zhong, L., Rahman, M.F., Hu, W.Y., Lim, K.W.: Analysis of direct torque control in permanent magnet synchronous motor drives. IEEE Trans. Power Electron. 12, 528-536 (1997) https://doi.org/10.1109/63.575680
- Wang, H., Li, J., Qu, R., Lai, J., Huang, H., Liu, H.: Study on high efficiency permanent magnet linear synchronous motor for maglev. IEEE Trans. Appl. Supercond. 28(3), 1-5 (2018)
- Zhang, I.Y., Zhu, J.: Direct torque control of permanent magnet synchronous motor width reduced torque ripple and commutation frequency. IEEE Trans. Power Electron. 26, 235-248 (2011) https://doi.org/10.1109/TPEL.2010.2059047
- Dhulipati, H., Ghosh, E., Mukundan, S., Korta, P., Tjong, J., Kar, N.C.: Advanced design optimization technique for torque profle improvement in six-phase PMSM using supervised machine learning for direct-drive EV. IEEE Trans. Energy Conv. 34(4), 2041-2051 (2019) https://doi.org/10.1109/tec.2019.2933619
- Kirtley, J.L., Banerjee, A., Englebretson, S.: Motors for ship propulsion. Proc. IEEE 103(12), 2320-2332 (2015) https://doi.org/10.1109/JPROC.2015.2487044
- Batzel, Y.T.D., Lee, K.Y.: Electric propulsion with sensorless permanent magnet synchronous motor: implementation and performance. IEEE Trans. Energy Conv. 20(3), 575-583 (2005) https://doi.org/10.1109/TEC.2005.852956
- Liang, W., Wang, J., Luk, P.C., Fang, W., Fei, W.: Analytical modeling of current harmonic components in PMSM drive width voltage-source inverter by SVPWM technique. IEEE Trans. Energy Conv. 29(3), 673-680 (2014) https://doi.org/10.1109/TEC.2014.2317072
- Gu, M., Ogasawara, S., Takemoto, M.: Novel PWM schemes width multi SVPWM of sensorless IPMSM drives for reducing current ripple. IEEE Trans. Power Electron. 31(9), 6461-6475 (2016) https://doi.org/10.1109/TPEL.2015.2500364
- Zhang, Z., Liu, X.: A duty ratio control strategy to reduce both torque and flux ripples of DTC for permanent magnet synchronous machines. IEEE Access. 7, 11820-11828 (2019) https://doi.org/10.1109/access.2019.2892121
- Buja, G.S., Kazmierkowski, M.P.: Direct torque control of PWM inverter-fed AC motors-a survey. IEEE Trans. Ind. Electron. 51(4), 744-757 (2004) https://doi.org/10.1109/TIE.2004.831717
- Habetler, T.G., Profumo, F., Pastorelli, M., Tolbert, L.M.: Direct torque control of induction machines using space vector modulation. IEEE Trans. Ind. Appl. 28(5), 1045-1053 (1992) https://doi.org/10.1109/28.158828
- Patel, C., Rajeevan, P.P., Dey, A., Ramchand, R., Gopakumar, K., Kazmierkowski, M.P.: Fast direct torque control of an open-end induction motor drive using 12-sided polygonal voltage space vectors. IEEE Trans. Power Electron. 27(1), 400-410 (2012) https://doi.org/10.1109/TPEL.2011.2159516
- Amiri, M., Milimonfared, J., Khaburi, D.A.: Predictive torque control implementation for induction motors based on discrete space vector modulation. IEEE Trans. Ind. Electron. 65(9), 6881-6889 (2018) https://doi.org/10.1109/tie.2018.2795589
- Ban, F., Lian, G., Zhang, J., Chen, B., Gu, G.: Study on a novel predictive torque control strategy based on the fnite control set for PMSM. IEEE Trans. Appl. Supercond. 29(2), 1-6 (2019)
- Beerten, J., Verveckken, J., Driesen, J.: Predictive direct torque control for flux and torque ripple reduction. IEEE Trans. Ind. Electron. 57(1), 404-412 (2010) https://doi.org/10.1109/TIE.2009.2033487
- Ambrozic, V., Buja, G.S., Menis, R.: Band-constrained technique for direct torque control of induction motor. IEEE Trans. Ind. Electron. 51(4), 776-784 (2004) https://doi.org/10.1109/TIE.2004.831722
- Lakhimsetty, S., Satelli, V.S.P., Rathore, R.S., Somasekhar, V.T.: Multilevel torque hysteresis-band based direct-torque control strategy for a three-level open-end winding induction motor drive for electric vehicle applications. IEEE J. Emerg. Select. Topics Power Electron. 7(3), 1969-1981 (2019) https://doi.org/10.1109/jestpe.2018.2870382